标签:
初学神经网络算法--梯度下降、反向传播、优化(交叉熵代价函数、L2规范化) 柔性最大值(softmax)还未领会其要义,之后再说
有点懒,暂时不想把算法重新总结,先贴一个之前做过的反向传播的总结ppt
其实python更好实现些,不过我想好好学matlab,就用matlab写了
然后是算法源码,第一个啰嗦些,不过可以帮助理解算法
function bpback1(ny,eta,mini_size,epoch) %ny:隐藏层为1层,神经元数目为ny;eta:学习速率;mini_size:最小采样;eopch:迭代次数 %该函数为梯度下降+反向传播 %images [numimages,images]=bpimages(‘train-images.idx3-ubyte‘); [n_test,test_data_x]=bpimages(‘t10k-images.idx3-ubyte‘); %labels [numlabels,labels]=bplabels(‘train-labels.idx1-ubyte‘); [n_test,test_data_y]=bplabels(‘t10k-labels.idx1-ubyte‘); %init w/b %rand(‘state‘,sum(100*clock)); %ny=30;eta=0.01;mini_size=10; w1=randn(ny,784); b1=randn(ny,1); w2=randn(10,ny); b2=randn(10,1); for epo=1:epoch for nums=1:numimages/mini_size for num=(nums-1)*mini_size+1:nums*mini_size x=images(:,num); y=labels(:,num); net2=w1*x; %input of net2 for i=1:ny hidden(i)=1/(1+exp(-net2(i)-b1(i)));%output of net2 end net3=w2*hidden‘; %input of net3 for i=1:10 o(i)=1/(1+exp(-net3(i)-b2(i)));%output of net3 end %back for i=1:10 delta3(i)=(y(i)-o(i))*o(i)*(1-o(i));%delta of net3 end for i=1:ny delta2(i)=delta3*w2(:,i)*hidden(i)*(1-hidden(i));%delta of net2 end %updata w/b for i=1:10 for j=1:ny w2(i,j)=w2(i,j)+eta*delta3(i)*hidden(j)/mini_size; end end for i=1:ny for j=1:784 w1(i,j)=w1(i,j)+eta*delta2(i)*x(j)/mini_size; end end for i=1:10 b2(i)=b2(i)+eta*delta3(i); end for i=1:ny b1(i)=b1(i)+eta*delta2(i); end end end %calculate sum of error %accuracy sum0=0; for i=1:1000 x0=test_data_x(:,i); y0=test_data_y(:,i); a1=[]; a2=[]; s1=w1*x0; for j=1:ny a1(j)=1/(1+exp(-s1(j)-b1(j))); end s2=w2*a1‘; for j=1:10 a2(j)=1/(1+exp(-s2(j)-b2(j))); end a2=a2‘; [m1,n1]=max(a2); [m2,n2]=max(y0); if n1==n2 sum0=sum0+1; end %e=o‘-y; %sigma(num)=e‘*e; sigma(i)=sumsqr(a2-y0); %代价为误差平方和 end sigmas(epo)=sum(sigma)/(2*1000); fprintf(‘epoch %d:%d/%d\n‘,epo,sum0,1000); end plot(sigmas); xlabel(‘epoch‘); ylabel(‘cost on the training_data‘); end
function bpback2(ny,eta,mini_size,epoch,numda) %ny:隐藏层为1层,神经元数目为ny;eta:学习速率;mini_size:最小采样;eopch:迭代次数 %bpback的优化,包括L2规范化、交叉熵代价函数的引入---结果证明该优化非常赞! %images [numimages,images]=bpimages(‘train-images.idx3-ubyte‘); [n_test,test_data_x]=bpimages(‘t10k-images.idx3-ubyte‘); %labels [numlabels,labels]=bplabels(‘train-labels.idx1-ubyte‘); [n_test,test_data_y]=bplabels(‘t10k-labels.idx1-ubyte‘); %init w/b %ny=30;eta=0.05;mini_size=10;epoch=10;numda=0.1; rand(‘state‘,sum(100*clock)); w1=randn(ny,784)/sqrt(784); b1=randn(ny,1); w2=randn(10,ny)/sqrt(ny); b2=randn(10,1); for epo=1:epoch for nums=1:numimages/mini_size for num=(nums-1)*mini_size+1:nums*mini_size x=images(:,num); y=labels(:,num); net2=w1*x; %input of net2 hidden=1./(1+exp(-net2-b1));%output of net2 net3=w2*hidden; %input of net3 o=1./(1+exp(-net3-b2));%output of net3 %back delta3=(y-o);%delta of net3 由于交叉熵代价函数的引入,偏导被消去 delta2=w2‘*delta3.*(hidden.*(1-hidden));%delta of net2 %updata w/b w2=w2*(1-eta*numda/numimages)+eta*delta3*hidden‘/mini_size; %L2规范化 w1=w1*(1-eta*numda/numimages)+eta*delta2*x‘/mini_size; b2=b2+eta*delta3/mini_size; b1=b1+eta*delta2/mini_size; end end %calculate sum of error %accuracy sum0=0; for i=1:1000 x0=test_data_x(:,i); y0=test_data_y(:,i); a1=[]; a2=[]; a1=1./(1+exp(-w1*x0-b1)); a2=1./(1+exp(-w2*a1-b2)); [m1,n1]=max(a2); [m2,n2]=max(y0); if n1==n2 sum0=sum0+1; end %e=o‘-y; %sigma(num)=e‘*e; sigma(i)=m2*log(m1)+(1-m2)*log(1-m1); %计算代价cost end sigmas(epo)=-sum(sigma)/1000; %cost求和 fprintf(‘epoch %d:%d/%d\n‘,epo,sum0,1000); end plot(sigmas); xlabel(‘epoch‘); ylabel(‘cost on the training_data‘); end
好好学习,天天向上,话说都没有表情用,果然是程序猿的世界,我还是贴个表情吧
标签:
原文地址:http://www.cnblogs.com/fanmu/p/5926087.html