标签:
http://acm.hdu.edu.cn/showproblem.php?pid=3579
注意下最后的答案等于0是不行的,因为要的是正整数
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define inf (0x3f3f3f3f) typedef long long int LL; #include <iostream> #include <sstream> #include <vector> #include <set> #include <map> #include <queue> #include <string> const int maxn = 500 + 20; LL mod[maxn]; LL r[maxn]; LL gcd(LL n, LL m) { if (n % m == 0) return m; else return gcd(m, n % m); } LL lcm(LL n, LL m) { return n / gcd(n, m) * m; } LL exgcd (LL a,LL mod,LL &x,LL &y) { //求解a关于mod的逆元 ★:当且仅当a和mod互质才有用 if (mod==0) { x=1; y=0; return a;//保留基本功能,返回最大公约数 } LL g=exgcd(mod,a%mod,x,y); LL t=x; //这里根据mod==0 return回来后, x=y; //x,y是最新的值x2,y2,改变一下,这样赋值就是为了x1=y2 y=t-(a/mod)*y; // y1=x2(变成了t)-[a/mod]y2; return g; //保留基本功能,返回最大公约数 } bool get_min_number (LL a,LL b,LL c,LL &x,LL &y) { //得到a*x+b*y=c的最小整数解 LL abGCD = gcd(a,b); if (c % abGCD != 0) return false;//不能整除GCD的话,此方程无解 a /= abGCD; b /= abGCD; c /= abGCD; LL tx,ty; exgcd(a,b,tx,ty); //先得到a*x+b*y=1的解,注意这个时候gcd(a,b)=1 x = tx * c; y = ty * c; //同时乘上c,c是约简了的。得到了一组a*x + b*y = c的解。 LL haveSignB = b; if (b < 0) b = -b; //避免mod负数啊,模负数没问题,模了负数后+负数就GG x = (x % b + b) % b; //最小解 // if (x == 0) x = b; //避免x = 0不是"正"整数 不要用这个,溢出 y = (c - a * x) / haveSignB; return true;//true代表可以 } int ff; void work() { int n; cin >> n; for (int i = 1; i <= n; ++i) { cin >> mod[i]; } for (int i = 1; i <= n; ++i) { cin >> r[i]; } LL mm = mod[1]; LL rr = r[1]; LL ansx = 1; for (int i = 2; i <= n; ++i) { LL x, y; if (get_min_number(mm, -mod[i], r[i] - rr, x, y) == false) { rr = -1; break; } ansx = mm * x + rr; mm = lcm(mm, mod[i]); rr = ansx % mm; } if (rr == 0) rr = mm; printf("Case %d: %I64d\n", ++ff, rr); return; } int main() { #ifdef local freopen("data.txt","r",stdin); #endif int t; cin >> t; while (t--) work(); return 0; }
标签:
原文地址:http://www.cnblogs.com/liuweimingcprogram/p/5926598.html