码迷,mamicode.com
首页 > 其他好文 > 详细

【UOJ131/NOI2015D2T2-品酒大会】sam求后缀树

时间:2016-10-03 16:54:55      阅读:276      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:http://uoj.ac/problem/131

题意:给出一个字符串,第i个字符对应的值为a[i], 对于i∈[0,n),求最长公共前缀大于等于i的字串对个数,并求这些字符串对开头对应值相乘最大值。n=3*10^5

 

题解:

学了个厉害的东西啊。。。

正解好像是sa+并查集(合并height)

然而我学了个用sam的做法。。

 

对于第一问:

首先我们要知道,建立后缀自动机之后,parent树就是逆序串的后缀树。

why?看这个博客好了:http://z55250825.blog.163.com/blog/static/15023080920144542541495/

 

直接逆序建后缀自动机,

因为对于现在parent树而言,任意两点的LCP等于两点在树上的LCA的step(step就是sam里的那个step。。一开始没想清楚还以为是parent-tree上的深度。。于是WA了。。)

这是转化成一个简单的树形dp了:按逆拓扑序更新(从孩子到parent),对于当前点x,看它是多少对点对的lcp。

假设有四个孩子,孩子的点数(就是这棵子树上有多少个点)分别为s1,s2,s3,s4

cnt[x]=1*(s1+s2+s3+s4)(这是x到x的孩子)  +  (s1+s2+s3)*s4  + (s1+s2)*s3  + s1*s2

那我们每遍历一个孩子y,就sum[x]+=sum[y],对于一个新的孩子yy,cnt[x]+=sum[x]*sum[yy];

 

 

对于第二问:

对于当前的parent树而言,等价于求parent树上两个叶节点乘积的最大值。

又因为考虑到ai可能是负数,所以我们只需要记录最大值,次大值,最小值,次小值就可以了。

 

参考题解:http://www.cnblogs.com/joyouth/p/5366396.html

注意很多细节。。

sam真的超厉害。。可以直接转化成后缀树和后缀数组。。

ORZ。。

 

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;

typedef long long LL;
const int N=2*3*100010;
const LL INF=1LL<<62;
int sl,cl,tot,last,c[N],in[N],first[N],step[N],pre[N],son[N][30];
LL w[N],cnt[N],ans[N],mx[N],smx[N],mn[N],smn[N],sum[N];
char s[N];
bool vis[N];
queue<int> Q;

LL maxx(LL x,LL y){return x>y ? x:y;}
LL minn(LL x,LL y){return x<y ? x:y;}
void gmax(LL &x,LL y){x=maxx(x,y);}
void gmin(LL &x,LL y){x=minn(x,y);}

int add_node(int x)
{
    step[++tot]=x;
    return tot;
}

void clear()
{
    memset(son,0,sizeof(son));
    memset(pre,0,sizeof(pre));
    memset(step,0,sizeof(step));
    memset(in,0,sizeof(in));
    // memset(cnt,0,sizeof(cnt));
    memset(sum,0,sizeof(sum));
    tot=0;add_node(0);last=1;
}

void extend(int ch)
{
    int p=last,np=add_node(step[p]+1);
    while(p && !son[p][ch])
    {
        son[p][ch]=np;
        in[np]++;
        p=pre[p];
    }
    if(!p) pre[np]=1;
    else
    {
        int q=son[p][ch];
        if(step[q]==step[p]+1) pre[np]=q;
        else
        {
            int nq=add_node(step[p]+1);
            for(int i=1;i<=26;i++) 
                if(son[q][i]) son[nq][i]=son[q][i],in[son[q][i]]++;
            pre[nq]=pre[q];
            pre[np]=pre[q]=nq;
            while(p && son[p][ch]==q) in[q]--,in[nq]++,son[p][ch]=nq,p=pre[p];
        }
    }
    last=np;
}

void get_tp()
{
    while(!Q.empty()) Q.pop();
    memset(vis,0,sizeof(vis));
    Q.push(1);vis[1]=1;cl=0;
    while(!Q.empty()) 
    {
        int x=Q.front();c[++cl]=x;vis[x]=0;Q.pop();
        for(int i=1;i<=26;i++)
        {
            int y=son[x][i];
            if(!y) continue;
            in[y]--;
            if(!in[y] && !vis[y]) vis[y]=1,Q.push(y);
        }
    }
}

int main()
{
    freopen("a.in","r",stdin);
    int x,y,ch;
    scanf("%d",&sl);
    scanf("%s",s+1);
    for(int i=1;i<=sl;i++) scanf("%lld",&w[i]);
    
    clear();
    for(int i=sl;i>=1;i--) extend(s[i]-a+1);
    get_tp();
    
    for(int i=1;i<=tot;i++) mx[i]=-INF,smx[i]=-INF,mn[i]=INF,smn[i]=INF;
    x=1;
    for(int i=sl;i>=1;i--)
    {
        ch=s[i]-a+1;
        x=son[x][ch];
        mx[x]=mn[x]=w[i];
        sum[x]++;
    }
    
    LL tmp;
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<=sl;i++) ans[i]=-INF;
    for(int i=cl;i>=1;i--)
    {
        y=c[i],x=pre[y];
        tmp=-INF;
        if(smx[y]>-INF) gmax(tmp,mx[y]*smx[y]);
        if(smn[y]<INF)  gmax(tmp,mn[y]*smn[y]);
        gmax(ans[step[y]],tmp);
        cnt[step[x]]+=sum[x]*sum[y];
        sum[x]+=sum[y];
        
        if(mx[y]>=mx[x]) smx[x]=mx[x],mx[x]=mx[y];//debug >=
        else if(mx[y]>smx[x]) smx[x]=mx[y];
        if(mn[y]<=mn[x]) smn[x]=mn[x],mn[x]=mn[y];//debug <=
        else if(mn[y]<smn[x]) smn[x]=mn[y];
    }
    // for(int i=0;i<sl;i++) printf("x = %d  cnt = %lld  ans = %lld\n",i,cnt[i],ans[i]);
    for(int i=sl-1;i>=0;i--) 
    {
        
        cnt[i]+=cnt[i+1];
        gmax(ans[i],ans[i+1]);
    }
    for(int i=0;i<sl;i++) 
    {
        if(!cnt[i]) ans[i]=0;
        printf("%lld %lld\n",cnt[i],ans[i]);
    }
    return 0;
}

 

【UOJ131/NOI2015D2T2-品酒大会】sam求后缀树

标签:

原文地址:http://www.cnblogs.com/KonjakJuruo/p/5929170.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!