标签:
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1080
题意:问n!能否被m整除。
给m分解质因数,用这些质因数以及他们的幂分别去除n,直到质因数的幂大于n。统计每一次的商,假如存在一个商小于质因数在m中出现的次数,说明n!不能被m整除了。uDEBUG好好用,没开LL一直wa,结果去查一下就查出来了。
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 typedef long long LL; 5 LL n, m; 6 vector<LL> p, a; 7 8 void f(LL x) { 9 p.clear(); a.clear(); 10 LL xx = (LL)sqrt(x) + 1; 11 for(LL i = 2; i < xx; i++) { 12 if(x % i == 0) { 13 p.push_back(i); 14 LL cnt = 0; 15 while(x % i == 0) { 16 x /= i; 17 cnt++; 18 } 19 a.push_back(cnt); 20 } 21 } 22 if(x > 1) { 23 p.push_back(x); a.push_back(1); 24 } 25 } 26 27 LL mul(LL x, LL n) { 28 LL ret = 1; 29 while(n) { 30 if(n & 1) ret *= x; 31 n >>= 1; x *= x; 32 } 33 return ret; 34 } 35 36 int main() { 37 //freopen("in", "r", stdin); 38 //freopen("out", "w", stdout); 39 while(~scanf("%lld%lld",&n,&m)) { 40 if(m == 0) { 41 printf("%lld does not divide %lld!\n", m, n); 42 continue; 43 } 44 f(m); bool flag = 0; 45 for(LL i = 0; i < p.size(); i++) { 46 LL cnt = 0; 47 LL j = 1; 48 LL q = mul(p[i], j++); 49 while(n >= q) { 50 cnt += (n / q); 51 q = mul(p[i], j++); 52 } 53 if(cnt < a[i]) flag = 1; 54 if(flag) break; 55 } 56 if(!flag) printf("%lld divides %lld!\n", m, n); 57 else printf("%lld does not divide %lld!\n", m, n); 58 } 59 return 0; 60 }
标签:
原文地址:http://www.cnblogs.com/kirai/p/5932564.html