码迷,mamicode.com
首页 > 其他好文 > 详细

使用sklearn简单粗暴对iris数据做分类

时间:2016-10-06 22:52:16      阅读:292      评论:0      收藏:0      [点我收藏+]

标签:

注:1、每一个模型都没有做数据处理

      2、调用方式都是一样的»»»  引入model → fit数据 → predict,后面只记录导入模型语句。

导入数据:

from sklearn import datasets
iris = datasets.load_iris()
print "The iris‘ target names: ",iris.target_names
x = iris.data
y = iris.target

线性回归:

from sklearn import linear_model
linear = linear_model.LinearRegression()
linear.fit(x,y)
print "linear‘s score: ",linear.score(x,y)
linear.coef_       #系数
linear.intercept_  #截距
print "predict: ",linear.predict([[7,5,2,0.5],[7.5,4,7,2]])

logistic回归:

from sklearn import linear_model
logistic = linear_model.LogisticRegression()

决策树:

from sklearn import tree
tree = tree.DecisionTreeClassifier(criterion=entropy)   # 可选Gini、Information Gain、Chi-square、entropy

支持向量机:

from sklearn import svm
svm = svm.SVC()

朴素贝叶斯:

from sklearn import naive_bayes
bayes = naive_bayes.GaussianNB()

KNN:

from sklearn import neighbors
KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)

使用sklearn简单粗暴对iris数据做分类

标签:

原文地址:http://www.cnblogs.com/fangqiushun/p/5934996.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!