码迷,mamicode.com
首页 > 其他好文 > 详细

限制对比度自适应直方图均衡(Contrast Limited Adaptive histgram equalization/CLAHE)

时间:2016-10-11 11:07:41      阅读:3692      评论:0      收藏:0      [点我收藏+]

标签:

转自:http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html

一、自适应直方图均衡化(Adaptive histgram equalization/AHE)

      1.简述 

      自适应直方图均衡化(AHE)用来提升图像的对比度的一种计算机图像处理技术。和普通的直方图均衡算法不同,AHE算法通过计算图像的局部直方图,然后重新分布亮度来来改变图像对比度。因此,该算法更适合于改进图像的局部对比度以及获得更多的图像细节。

      不过,AHE有过度放大图像中相同区域的噪音的问题,另外一种自适应的直方图均衡算法即限制对比度直方图均衡(CLAHE)算法能有限的限制这种不利的放大。

2. 算法的解释

       普通的直方图均衡算法对于整幅图像的像素使用相同的直方图变换,对于那些像素值分布比较均衡的图像来说,算法的效果很好。然后,如果图像中包括明显比图像其它区域暗或者亮的部分,在这些部分的对比度将得不到有效的增强。

       AHE算法通过对局部区域执行响应的直方图均衡来改变上述问题。该算法首先被开发出来适用于改进航天器驾驶舱的显示效果。其最简单的形式,就是每个像素通过其周边一个矩形范围内的像素的直方图进行均衡化。均衡的方式则完全同普通的均衡化算法:变换函数同像素周边的累积直方图函数(CDF)成比例。

       图像边缘的像素需要特殊处理,因为边缘像素的领域不完全在图像内部。这个通过镜像图像边缘的行像素或列像素来解决。直接复制边缘的像素进行扩充是不合适的。因为这会导致带有剑锋的领域直方图。

 

 3. AHE的属性

  •  领域的大小是该方法的一个参数。领域小,对比度得到增强,领域大,则对比度降低。
  •  当某个区域包含的像素值非常相似,其直方图就会尖状化,此时直方图的变换函数会将一个很窄范围内的像素映射到整个像素范围。这将使得某些平坦区域中的少量噪音经AHE处理后过度放大。

 

二、限制对比度自适应直方图均衡(Contrast Limited Adaptive histgram equalization/CLAHE)

  1.简述

     CLAHE同普通的自适应直方图均衡不同的地方主要是其对比度限幅。这个特性也可以应用到全局直方图均衡化中,即构成所谓的限制对比度直方图均衡(CLHE),但这在实际中很少使用。在CLAHE中,对于每个小区域都必须使用对比度限幅。CLAHE主要是用来克服AHE的过度放大噪音的问题。 

     这主要是通过限制AHE算法的对比提高程度来达到的。在指定的像素值周边的对比度放大主要是由变换函数的斜度决定的。这个斜度和领域的累积直方图的斜度成比例。CLAHE通过在计算CDF前用预先定义的阈值来裁剪直方图以达到限制放大幅度的目的。这限制了CDF的斜度因此,也限制了变换函数的斜度。直方图被裁剪的值,也就是所谓的裁剪限幅,取决于直方图的分布因此也取决于领域大小的取值。

     通常,直接忽略掉那些超出直方图裁剪限幅的部分是不好的,而应该将这些裁剪掉的部分均匀的分布到直方图的其他部分。如下图所示。

 

技术分享

这个重分布的过程可能会导致那些倍裁剪掉的部分由重新超过了裁剪值(如上图的绿色部分所示)。如果这不是所希望的,可以不带使用重复不的过程指导这个超出的部分已经变得微不足道了。

 2. 通过插值加快计算速度

        如上所述的直接的自适应直方图,不管是否带有对比度限制,都需要对图像中的每个像素计算器领域直方图以及对应的变换函数,这使得算法及其耗时。

        而插值使得上述算法效率上有极大的提升,并且质量上没有下降。首先,将图像均匀分成等份矩形大小,如下图的右侧部分所示(8行8列64个块是常用的选择)。然后计算个块的直方图、CDF以及对应的变换函数。这个变换函数对于块的中心像素(下图左侧部分的黑色小方块)是完全符合原始定义的。而其他的像素通过哪些于其临近的四个块的变换函数插值获取。位于图中蓝色阴影部分的像素采用双线性查插值,而位于便于边缘的(绿色阴影)部分采用线性插值,角点处(红色阴影处)直接使用块所在的变换函数。

技术分享

   这样的过程极大的降低了变换函数需要计算的次数,只是增加了一些双线性插值的计算量。

   CLAHE算法的源代码参考:

技术分享
/*
 * ANSI C code from the article
 * "Contrast Limited Adaptive Histogram Equalization"
 * by Karel Zuiderveld, karel@cv.ruu.nl
 * in "Graphics Gems IV", Academic Press, 1994
 *
 *
 *  These functions implement Contrast Limited Adaptive Histogram Equalization.
 *  The main routine (CLAHE) expects an input image that is stored contiguously in
 *  memory;  the CLAHE output image overwrites the original input image and has the
 *  same minimum and maximum values (which must be provided by the user).
 *  This implementation assumes that the X- and Y image resolutions are an integer
 *  multiple of the X- and Y sizes of the contextual regions. A check on various other
 *  error conditions is performed.
 *
 *  #define the symbol BYTE_IMAGE to make this implementation suitable for
 *  8-bit images. The maximum number of contextual regions can be redefined
 *  by changing uiMAX_REG_X and/or uiMAX_REG_Y; the use of more than 256
 *  contextual regions is not recommended.
 *
 *  The code is ANSI-C and is also C++ compliant.
 *
 *  Author: Karel Zuiderveld, Computer Vision Research Group,
 *         Utrecht, The Netherlands (karel@cv.ruu.nl)
 */

#ifdef BYTE_IMAGE
typedef unsigned char kz_pixel_t;     /* for 8 bit-per-pixel images */
#define uiNR_OF_GREY (256)
#else
typedef unsigned short kz_pixel_t;     /* for 12 bit-per-pixel images (default) */
# define uiNR_OF_GREY (4096)
#endif

/******** Prototype of CLAHE function. Put this in a separate include file. *****/
int CLAHE(kz_pixel_t* pImage, unsigned int uiXRes, unsigned int uiYRes, kz_pixel_t Min,
      kz_pixel_t Max, unsigned int uiNrX, unsigned int uiNrY,
      unsigned int uiNrBins, float fCliplimit);

/*********************** Local prototypes ************************/
static void ClipHistogram (unsigned long*, unsigned int, unsigned long);
static void MakeHistogram (kz_pixel_t*, unsigned int, unsigned int, unsigned int,
        unsigned long*, unsigned int, kz_pixel_t*);
static void MapHistogram (unsigned long*, kz_pixel_t, kz_pixel_t,
           unsigned int, unsigned long);
static void MakeLut (kz_pixel_t*, kz_pixel_t, kz_pixel_t, unsigned int);
static void Interpolate (kz_pixel_t*, int, unsigned long*, unsigned long*,
    unsigned long*, unsigned long*, unsigned int, unsigned int, kz_pixel_t*);

/**************     Start of actual code **************/
#include <stdlib.h>             /* To get prototypes of malloc() and free() */

const unsigned int uiMAX_REG_X = 16;      /* max. # contextual regions in x-direction */
const unsigned int uiMAX_REG_Y = 16;      /* max. # contextual regions in y-direction */



/************************** main function CLAHE ******************/
int CLAHE (kz_pixel_t* pImage, unsigned int uiXRes, unsigned int uiYRes,
     kz_pixel_t Min, kz_pixel_t Max, unsigned int uiNrX, unsigned int uiNrY,
          unsigned int uiNrBins, float fCliplimit)
/*   pImage - Pointer to the input/output image
 *   uiXRes - Image resolution in the X direction
 *   uiYRes - Image resolution in the Y direction
 *   Min - Minimum greyvalue of input image (also becomes minimum of output image)
 *   Max - Maximum greyvalue of input image (also becomes maximum of output image)
 *   uiNrX - Number of contextial regions in the X direction (min 2, max uiMAX_REG_X)
 *   uiNrY - Number of contextial regions in the Y direction (min 2, max uiMAX_REG_Y)
 *   uiNrBins - Number of greybins for histogram ("dynamic range")
 *   float fCliplimit - Normalized cliplimit (higher values give more contrast)
 * The number of "effective" greylevels in the output image is set by uiNrBins; selecting
 * a small value (eg. 128) speeds up processing and still produce an output image of
 * good quality. The output image will have the same minimum and maximum value as the input
 * image. A clip limit smaller than 1 results in standard (non-contrast limited) AHE.
 */
{
    unsigned int uiX, uiY;          /* counters */
    unsigned int uiXSize, uiYSize, uiSubX, uiSubY; /* size of context. reg. and subimages */
    unsigned int uiXL, uiXR, uiYU, uiYB;  /* auxiliary variables interpolation routine */
    unsigned long ulClipLimit, ulNrPixels;/* clip limit and region pixel count */
    kz_pixel_t* pImPointer;           /* pointer to image */
    kz_pixel_t aLUT[uiNR_OF_GREY];        /* lookup table used for scaling of input image */
    unsigned long* pulHist, *pulMapArray; /* pointer to histogram and mappings*/
    unsigned long* pulLU, *pulLB, *pulRU, *pulRB; /* auxiliary pointers interpolation */

    if (uiNrX > uiMAX_REG_X) return -1;       /* # of regions x-direction too large */
    if (uiNrY > uiMAX_REG_Y) return -2;       /* # of regions y-direction too large */
    if (uiXRes % uiNrX) return -3;      /* x-resolution no multiple of uiNrX */
    if (uiYRes & uiNrY) return -4;      /* y-resolution no multiple of uiNrY */
    if (Max >= uiNR_OF_GREY) return -5;       /* maximum too large */
    if (Min >= Max) return -6;          /* minimum equal or larger than maximum */
    if (uiNrX < 2 || uiNrY < 2) return -7;/* at least 4 contextual regions required */
    if (fCliplimit == 1.0) return 0;      /* is OK, immediately returns original image. */
    if (uiNrBins == 0) uiNrBins = 128;      /* default value when not specified */

    pulMapArray=(unsigned long *)malloc(sizeof(unsigned long)*uiNrX*uiNrY*uiNrBins);
    if (pulMapArray == 0) return -8;      /* Not enough memory! (try reducing uiNrBins) */

    uiXSize = uiXRes/uiNrX; uiYSize = uiYRes/uiNrY;  /* Actual size of contextual regions */
    ulNrPixels = (unsigned long)uiXSize * (unsigned long)uiYSize;

    if(fCliplimit > 0.0) {          /* Calculate actual cliplimit     */
       ulClipLimit = (unsigned long) (fCliplimit * (uiXSize * uiYSize) / uiNrBins);
       ulClipLimit = (ulClipLimit < 1UL) ? 1UL : ulClipLimit;
    }
    else ulClipLimit = 1UL<<14;          /* Large value, do not clip (AHE) */
    MakeLut(aLUT, Min, Max, uiNrBins);      /* Make lookup table for mapping of greyvalues */
    /* Calculate greylevel mappings for each contextual region */
    for (uiY = 0, pImPointer = pImage; uiY < uiNrY; uiY++) {
    for (uiX = 0; uiX < uiNrX; uiX++, pImPointer += uiXSize) {
        pulHist = &pulMapArray[uiNrBins * (uiY * uiNrX + uiX)];
        MakeHistogram(pImPointer,uiXRes,uiXSize,uiYSize,pulHist,uiNrBins,aLUT);
        ClipHistogram(pulHist, uiNrBins, ulClipLimit);
        MapHistogram(pulHist, Min, Max, uiNrBins, ulNrPixels);
    }
    pImPointer += (uiYSize - 1) * uiXRes;          /* skip lines, set pointer */
    }

    /* Interpolate greylevel mappings to get CLAHE image */
    for (pImPointer = pImage, uiY = 0; uiY <= uiNrY; uiY++) {
    if (uiY == 0) {                      /* special case: top row */
        uiSubY = uiYSize >> 1;  uiYU = 0; uiYB = 0;
    }
    else {
        if (uiY == uiNrY) {                  /* special case: bottom row */
        uiSubY = uiYSize >> 1;    uiYU = uiNrY-1;     uiYB = uiYU;
        }
        else {                      /* default values */
        uiSubY = uiYSize; uiYU = uiY - 1; uiYB = uiYU + 1;
        }
    }
    for (uiX = 0; uiX <= uiNrX; uiX++) {
        if (uiX == 0) {                  /* special case: left column */
        uiSubX = uiXSize >> 1; uiXL = 0; uiXR = 0;
        }
        else {
        if (uiX == uiNrX) {              /* special case: right column */
            uiSubX = uiXSize >> 1;  uiXL = uiNrX - 1; uiXR = uiXL;
        }
        else {                      /* default values */
            uiSubX = uiXSize; uiXL = uiX - 1; uiXR = uiXL + 1;
        }
        }

        pulLU = &pulMapArray[uiNrBins * (uiYU * uiNrX + uiXL)];
        pulRU = &pulMapArray[uiNrBins * (uiYU * uiNrX + uiXR)];
        pulLB = &pulMapArray[uiNrBins * (uiYB * uiNrX + uiXL)];
        pulRB = &pulMapArray[uiNrBins * (uiYB * uiNrX + uiXR)];
        Interpolate(pImPointer,uiXRes,pulLU,pulRU,pulLB,pulRB,uiSubX,uiSubY,aLUT);
        pImPointer += uiSubX;              /* set pointer on next matrix */
    }
    pImPointer += (uiSubY - 1) * uiXRes;
    }
    free(pulMapArray);                      /* free space for histograms */
    return 0;                          /* return status OK */
}
void ClipHistogram (unsigned long* pulHistogram, unsigned int
             uiNrGreylevels, unsigned long ulClipLimit)
/* This function performs clipping of the histogram and redistribution of bins.
 * The histogram is clipped and the number of excess pixels is counted. Afterwards
 * the excess pixels are equally redistributed across the whole histogram (providing
 * the bin count is smaller than the cliplimit).
 */
{
    unsigned long* pulBinPointer, *pulEndPointer, *pulHisto;
    unsigned long ulNrExcess, ulUpper, ulBinIncr, ulStepSize, i;
    long lBinExcess;

    ulNrExcess = 0;  pulBinPointer = pulHistogram;
    for (i = 0; i < uiNrGreylevels; i++) { /* calculate total number of excess pixels */
    lBinExcess = (long) pulBinPointer[i] - (long) ulClipLimit;
    if (lBinExcess > 0) ulNrExcess += lBinExcess;      /* excess in current bin */
    };

    /* Second part: clip histogram and redistribute excess pixels in each bin */
    ulBinIncr = ulNrExcess / uiNrGreylevels;          /* average binincrement */
    ulUpper =  ulClipLimit - ulBinIncr;     /* Bins larger than ulUpper set to cliplimit */

    for (i = 0; i < uiNrGreylevels; i++) {
      if (pulHistogram[i] > ulClipLimit) pulHistogram[i] = ulClipLimit; /* clip bin */
      else {
      if (pulHistogram[i] > ulUpper) {        /* high bin count */
          ulNrExcess -= pulHistogram[i] - ulUpper; pulHistogram[i]=ulClipLimit;
      }
      else {                    /* low bin count */
          ulNrExcess -= ulBinIncr; pulHistogram[i] += ulBinIncr;
      }
       }
    }

    while (ulNrExcess) {   /* Redistribute remaining excess  */
    pulEndPointer = &pulHistogram[uiNrGreylevels]; pulHisto = pulHistogram;

    while (ulNrExcess && pulHisto < pulEndPointer) {
        ulStepSize = uiNrGreylevels / ulNrExcess;
        if (ulStepSize < 1) ulStepSize = 1;          /* stepsize at least 1 */
        for (pulBinPointer=pulHisto; pulBinPointer < pulEndPointer && ulNrExcess;
         pulBinPointer += ulStepSize) {
        if (*pulBinPointer < ulClipLimit) {
            (*pulBinPointer)++;     ulNrExcess--;      /* reduce excess */
        }
        }
        pulHisto++;          /* restart redistributing on other bin location */
    }
    }
}
void MakeHistogram (kz_pixel_t* pImage, unsigned int uiXRes,
        unsigned int uiSizeX, unsigned int uiSizeY,
        unsigned long* pulHistogram,
        unsigned int uiNrGreylevels, kz_pixel_t* pLookupTable)
/* This function classifies the greylevels present in the array image into
 * a greylevel histogram. The pLookupTable specifies the relationship
 * between the greyvalue of the pixel (typically between 0 and 4095) and
 * the corresponding bin in the histogram (usually containing only 128 bins).
 */
{
    kz_pixel_t* pImagePointer;
    unsigned int i;

    for (i = 0; i < uiNrGreylevels; i++) pulHistogram[i] = 0L; /* clear histogram */

    for (i = 0; i < uiSizeY; i++) {
    pImagePointer = &pImage[uiSizeX];
    while (pImage < pImagePointer) pulHistogram[pLookupTable[*pImage++]]++;
    pImagePointer += uiXRes;
    pImage = &pImagePointer[-uiSizeX];
    }
}

void MapHistogram (unsigned long* pulHistogram, kz_pixel_t Min, kz_pixel_t Max,
           unsigned int uiNrGreylevels, unsigned long ulNrOfPixels)
/* This function calculates the equalized lookup table (mapping) by
 * cumulating the input histogram. Note: lookup table is rescaled in range [Min..Max].
 */
{
    unsigned int i;  unsigned long ulSum = 0;
    const float fScale = ((float)(Max - Min)) / ulNrOfPixels;
    const unsigned long ulMin = (unsigned long) Min;

    for (i = 0; i < uiNrGreylevels; i++) {
    ulSum += pulHistogram[i]; pulHistogram[i]=(unsigned long)(ulMin+ulSum*fScale);
    if (pulHistogram[i] > Max) pulHistogram[i] = Max;
    }
}

void MakeLut (kz_pixel_t * pLUT, kz_pixel_t Min, kz_pixel_t Max, unsigned int uiNrBins)
/* To speed up histogram clipping, the input image [Min,Max] is scaled down to
 * [0,uiNrBins-1]. This function calculates the LUT.
 */
{
    int i;
    const kz_pixel_t BinSize = (kz_pixel_t) (1 + (Max - Min) / uiNrBins);

    for (i = Min; i <= Max; i++)  pLUT[i] = (i - Min) / BinSize;
}

void Interpolate (kz_pixel_t * pImage, int uiXRes, unsigned long * pulMapLU,
     unsigned long * pulMapRU, unsigned long * pulMapLB,  unsigned long * pulMapRB,
     unsigned int uiXSize, unsigned int uiYSize, kz_pixel_t * pLUT)
/* pImage      - pointer to input/output image
 * uiXRes      - resolution of image in x-direction
 * pulMap*     - mappings of greylevels from histograms
 * uiXSize     - uiXSize of image submatrix
 * uiYSize     - uiYSize of image submatrix
 * pLUT           - lookup table containing mapping greyvalues to bins
 * This function calculates the new greylevel assignments of pixels within a submatrix
 * of the image with size uiXSize and uiYSize. This is done by a bilinear interpolation
 * between four different mappings in order to eliminate boundary artifacts.
 * It uses a division; since division is often an expensive operation, I added code to
 * perform a logical shift instead when feasible.
 */
{
    const unsigned int uiIncr = uiXRes-uiXSize; /* Pointer increment after processing row */
    kz_pixel_t GreyValue; unsigned int uiNum = uiXSize*uiYSize; /* Normalization factor */

    unsigned int uiXCoef, uiYCoef, uiXInvCoef, uiYInvCoef, uiShift = 0;

    if (uiNum & (uiNum - 1))   /* If uiNum is not a power of two, use division */
    for (uiYCoef = 0, uiYInvCoef = uiYSize; uiYCoef < uiYSize;
     uiYCoef++, uiYInvCoef--,pImage+=uiIncr) {
    for (uiXCoef = 0, uiXInvCoef = uiXSize; uiXCoef < uiXSize;
         uiXCoef++, uiXInvCoef--) {
        GreyValue = pLUT[*pImage];           /* get histogram bin value */
        *pImage++ = (kz_pixel_t ) ((uiYInvCoef * (uiXInvCoef*pulMapLU[GreyValue]
                      + uiXCoef * pulMapRU[GreyValue])
                + uiYCoef * (uiXInvCoef * pulMapLB[GreyValue]
                      + uiXCoef * pulMapRB[GreyValue])) / uiNum);
    }
    }
    else {               /* avoid the division and use a right shift instead */
    while (uiNum >>= 1) uiShift++;           /* Calculate 2log of uiNum */
    for (uiYCoef = 0, uiYInvCoef = uiYSize; uiYCoef < uiYSize;
         uiYCoef++, uiYInvCoef--,pImage+=uiIncr) {
         for (uiXCoef = 0, uiXInvCoef = uiXSize; uiXCoef < uiXSize;
           uiXCoef++, uiXInvCoef--) {
           GreyValue = pLUT[*pImage];      /* get histogram bin value */
           *pImage++ = (kz_pixel_t)((uiYInvCoef* (uiXInvCoef * pulMapLU[GreyValue]
                      + uiXCoef * pulMapRU[GreyValue])
                + uiYCoef * (uiXInvCoef * pulMapLB[GreyValue]
                      + uiXCoef * pulMapRB[GreyValue])) >> uiShift);
        }
    }
    }
}
View Code

上面的代码中对于各块之间的插值部分的编码技巧很值得学习和参考。

      以上描述均翻译自:http://en.wikipedia.org/wiki/CLAHE#Contrast_Limited_AHE

 Karel Zuiderveld提供的代码:

 

if (pulHistogram[i] > ulUpper)    
            {       /* high bin count */   
                ulNrExcess -= (pulHistogram[i] - ulUpper); pulHistogram[i]=ulClipLimit;   
            }   

 应该修正为:

技术分享
1 if (pulHistogram[i] > ulUpper)    
2             {       /* high bin count */   
3                 ulNrExcess -= (ulClipLimit -pulHistogram[i]); pulHistogram[i]=ulClipLimit;   
4             }   
View Code

同时,各位也可以参考下matlab的adapthisteq.m文件,该文件的代码基本是严格按照 Karel Zuiderveld作者的原文写的,贴出如下:

技术分享
  1 function out = adapthisteq(varargin)
  2 %ADAPTHISTEQ Contrast-limited Adaptive Histogram Equalization (CLAHE).
  3 %   ADAPTHISTEQ enhances the contrast of images by transforming the
  4 %   values in the intensity image I.  Unlike HISTEQ, it operates on small
  5 %   data regions (tiles), rather than the entire image. Each tiles 
  6 %   contrast is enhanced, so that the histogram of the output region
  7 %   approximately matches the specified histogram. The neighboring tiles 
  8 %   are then combined using bilinear interpolation in order to eliminate
  9 %   artificially induced boundaries.  The contrast, especially
 10 %   in homogeneous areas, can be limited in order to avoid amplifying the
 11 %   noise which might be present in the image.
 12 %
 13 %   J = ADAPTHISTEQ(I) Performs CLAHE on the intensity image I.
 14 %
 15 %   J = ADAPTHISTEQ(I,PARAM1,VAL1,PARAM2,VAL2...) sets various parameters.
 16 %   Parameter names can be abbreviated, and case does not matter. Each 
 17 %   string parameter is followed by a value as indicated below:
 18 %
 19 %   NumTiles     Two-element vector of positive integers: [M N].
 20 %                  [M N] specifies the number of tile rows and
 21 %                  columns.  Both M and N must be at least 2. 
 22 %                  The total number of image tiles is equal to M*N.
 23 %
 24 %                  Default: [8 8].
 25 %
 26 %   ClipLimit    Real scalar from 0 to 1.
 27 %                  ClipLimit limits contrast enhancement. Higher numbers 
 28 %                  result in more contrast. 
 29 %       
 30 %                  Default: 0.01.
 31 %
 32 %   NBins        Positive integer scalar.
 33 %                  Sets number of bins for the histogram used in building a
 34 %                  contrast enhancing transformation. Higher values result 
 35 %                  in greater dynamic range at the cost of slower processing
 36 %                  speed.
 37 %
 38 %                  Default: 256.
 39 %
 40 %   Range        One of the strings: original or full.
 41 %                  Controls the range of the output image data. If Range 
 42 %                  is set to original, the range is limited to 
 43 %                  [min(I(:)) max(I(:))]. Otherwise, by default, or when 
 44 %                  Range is set to full, the full range of the output 
 45 %                  image class is used (e.g. [0 255] for uint8).
 46 %
 47 %                  Default: full.
 48 %
 49 %   Distribution Distribution can be one of three strings: uniform,
 50 %                  rayleigh, exponential.
 51 %                  Sets desired histogram shape for the image tiles, by 
 52 %                  specifying a distribution type.
 53 %
 54 %                  Default: uniform.
 55 %
 56 %   Alpha        Nonnegative real scalar.
 57 %                  Alpha is a distribution parameter, which can be supplied 
 58 %                  when Dist is set to either rayleigh or exponential.
 59 %
 60 %                  Default: 0.4.
 61 %
 62 %   Notes
 63 %   -----
 64 %   - NumTiles specify the number of rectangular contextual regions (tiles)
 65 %     into which the image is divided. The contrast transform function is
 66 %     calculated for each of these regions individually. The optimal number of
 67 %     tiles depends on the type of the input image, and it is best determined
 68 %     through experimentation.
 69 %
 70 %   - The ClipLimit is a contrast factor that prevents over-saturation of the
 71 %     image specifically in homogeneous areas.  These areas are characterized
 72 %     by a high peak in the histogram of the particular image tile due to many
 73 %     pixels falling inside the same gray level range. Without the clip limit,
 74 %     the adaptive histogram equalization technique could produce results that,
 75 %     in some cases, are worse than the original image.
 76 %
 77 %   - ADAPTHISTEQ can use Uniform, Rayleigh, or Exponential distribution as
 78 %     the basis for creating the contrast transform function. The distribution
 79 %     that should be used depends on the type of the input image.
 80 %     For example, underwater imagery appears to look more natural when the
 81 %     Rayleigh distribution is used.
 82 %
 83 %   Class Support
 84 %   -------------
 85 %   Intensity image I can be uint8, uint16, int16, double, or single.
 86 %   The output image J has the same class as I.
 87 %
 88 %   Example 1
 89 %   ---------
 90 %   Apply Contrast-Limited Adaptive Histogram Equalization to an 
 91 %   image and display the results. 
 92 %
 93 %      I = imread(tire.tif);
 94 %      A = adapthisteq(I,clipLimit,0.02,Distribution,rayleigh);
 95 %      figure, imshow(I);
 96 %      figure, imshow(A);
 97 %
 98 %   Example 2
 99 %   ---------
100 %  
101 %   Apply Contrast-Limited Adaptive Histogram Equalization to a color 
102 %   photograph.
103 %
104 %      [X MAP] = imread(shadow.tif);
105 %      RGB = ind2rgb(X,MAP); % convert indexed image to truecolor format
106 %      cform2lab = makecform(srgb2lab);
107 %      LAB = applycform(RGB, cform2lab); %convert image to L*a*b color space
108 %      L = LAB(:,:,1)/100; % scale the values to range from 0 to 1
109 %      LAB(:,:,1) = adapthisteq(L,NumTiles,[8 8],ClipLimit,0.005)*100;
110 %      cform2srgb = makecform(lab2srgb);
111 %      J = applycform(LAB, cform2srgb); %convert back to RGB
112 %      figure, imshow(RGB); %display the results
113 %      figure, imshow(J);
114 %
115 %   See also HISTEQ.
116 
117 %   Copyright 1993-2010 The MathWorks, Inc.
118 %   $Revision: 1.1.6.12 $  $Date: 2011/08/09 17:48:54 $
119 
120 %   References:
121 %      Karel Zuiderveld, "Contrast Limited Adaptive Histogram Equalization",
122 %      Graphics Gems IV, p. 474-485, code: p. 479-484
123 %
124 %      Hanumant Singh, Woods Hole Oceanographic Institution, personal
125 %      communication
126 
127 %--------------------------- The algorithm ----------------------------------
128 %
129 %  1. Obtain all the inputs: 
130 %    * image
131 %    * number of regions in row and column directions
132 %    * number of bins for the histograms used in building image transform
133 %      function (dynamic range)
134 %    * clip limit for contrast limiting (normalized from 0 to 1)
135 %    * other miscellaneous options
136 %  2. Pre-process the inputs:  
137 %    * determine real clip limit from the normalized value
138 %    * if necessary, pad the image before splitting it into regions
139 %  3. Process each contextual region (tile) thus producing gray level mappings
140 %    * extract a single image region
141 %    * make a histogram for this region using the specified number of bins
142 %    * clip the histogram using clip limit
143 %    * create a mapping (transformation function) for this region
144 %  4. Interpolate gray level mappings in order to assemble final CLAHE image
145 %    * extract cluster of four neighboring mapping functions
146 %    * process image region partly overlapping each of the mapping tiles
147 %    * extract a single pixel, apply four mappings to that pixel, and 
148 %      interpolate between the results to obtain the output pixel; repeat
149 %      over the entire image
150 %
151 %  See code for further details.
152 %
153 %-----------------------------------------------------------------------------
154 
155 [I, selectedRange, fullRange, numTiles, dimTile, clipLimit, numBins, ...
156  noPadRect, distribution, alpha, int16ClassChange] = parseInputs(varargin{:});
157 
158 tileMappings = makeTileMappings(I, numTiles, dimTile, numBins, clipLimit, ...
159                                 selectedRange, fullRange, distribution, alpha);
160 
161 %Synthesize the output image based on the individual tile mappings. 
162 out = makeClaheImage(I, tileMappings, numTiles, selectedRange, numBins,...
163                      dimTile);
164 
165 if int16ClassChange
166   % Change uint16 back to int16 so output has same class as input.
167   out = uint16toint16(out);
168 end
169 
170 if ~isempty(noPadRect) %do we need to remove padding?
171   out = out(noPadRect.ulRow:noPadRect.lrRow, ...
172             noPadRect.ulCol:noPadRect.lrCol);
173 end
174 
175 %-----------------------------------------------------------------------------
176 
177 function tileMappings = ...
178     makeTileMappings(I, numTiles, dimTile, numBins, clipLimit,...
179                      selectedRange, fullRange, distribution, alpha)
180 
181 numPixInTile = prod(dimTile);
182 
183 tileMappings = cell(numTiles);
184 
185 % extract and process each tile
186 imgCol = 1;
187 for col=1:numTiles(2),
188   imgRow = 1;
189   for row=1:numTiles(1),
190     
191     tile = I(imgRow:imgRow+dimTile(1)-1,imgCol:imgCol+dimTile(2)-1);
192 
193     % for speed, call MEX file directly thus avoiding costly
194     % input parsing of imhist
195     tileHist = imhistc(tile, numBins, 1, fullRange(2)); 
196     
197     tileHist = clipHistogram(tileHist, clipLimit, numBins);
198     
199     tileMapping = makeMapping(tileHist, selectedRange, fullRange, ...
200                               numPixInTile, distribution, alpha);
201     
202     % assemble individual tile mappings by storing them in a cell array;
203     tileMappings{row,col} = tileMapping;
204 
205     imgRow = imgRow + dimTile(1);    
206   end
207   imgCol = imgCol + dimTile(2); % move to the next column of tiles
208 end
209 
210 %-----------------------------------------------------------------------------
211 % Calculate the equalized lookup table (mapping) based on cumulating the input 
212 % histogram.  Note: lookup table is rescaled in the selectedRange [Min..Max].
213 
214 function mapping = makeMapping(imgHist, selectedRange, fullRange, ...
215                                numPixInTile, distribution, alpha)
216 
217 histSum = cumsum(imgHist);
218 valSpread  = selectedRange(2) - selectedRange(1);
219 
220 switch distribution
221  case uniform,
222   scale =  valSpread/numPixInTile;
223   mapping = min(selectedRange(1) + histSum*scale,...
224                 selectedRange(2)); %limit to max
225   
226  case rayleigh, % suitable for underwater imagery
227   % pdf = (t./alpha^2).*exp(-t.^2/(2*alpha^2))*U(t)
228   % cdf = 1-exp(-t.^2./(2*alpha^2))
229   hconst = 2*alpha^2;
230   vmax = 1 - exp(-1/hconst);
231   val = vmax*(histSum/numPixInTile);
232   val(val>=1) = 1-eps; % avoid log(0)
233   temp = sqrt(-hconst*log(1-val));
234   mapping = min(selectedRange(1)+temp*valSpread,...
235                 selectedRange(2)); %limit to max
236   
237  case exponential,
238   % pdf = alpha*exp(-alpha*t)*U(t)
239   % cdf = 1-exp(-alpha*t)
240   vmax = 1 - exp(-alpha);
241   val = (vmax*histSum/numPixInTile);
242   val(val>=1) = 1-eps;
243   temp = -1/alpha*log(1-val);
244   mapping = min(selectedRange(1)+temp*valSpread,selectedRange(2));
245   
246  otherwise,
247   error(message(images:adapthisteq:distributionType)) %should never get here
248   
249 end
250 
251 %rescale the result to be between 0 and 1 for later use by the GRAYXFORM 
252 %private mex function
253 mapping = mapping/fullRange(2);
254 
255 %-----------------------------------------------------------------------------
256 % This function clips the histogram according to the clipLimit and
257 % redistributes clipped pixels across bins below the clipLimit
258 
259 function imgHist = clipHistogram(imgHist, clipLimit, numBins)
260 
261 % total number of pixels overflowing clip limit in each bin
262 totalExcess = sum(max(imgHist - clipLimit,0));  
263 
264 % clip the histogram and redistribute the excess pixels in each bin
265 avgBinIncr = floor(totalExcess/numBins);
266 upperLimit = clipLimit - avgBinIncr; % bins larger than this will be
267                                      % set to clipLimit
268 
269 % this loop should speed up the operation by putting multiple pixels
270 % into the "obvious" places first
271 for k=1:numBins
272   if imgHist(k) > clipLimit
273     imgHist(k) = clipLimit;
274   else
275     if imgHist(k) > upperLimit % high bin count
276       totalExcess = totalExcess - (clipLimit - imgHist(k));
277       imgHist(k) = clipLimit;
278     else
279       totalExcess = totalExcess - avgBinIncr;
280       imgHist(k) = imgHist(k) + avgBinIncr;      
281     end
282   end
283 end
284 
285 % this loops redistributes the remaining pixels, one pixel at a time
286 k = 1;
287 while (totalExcess ~= 0)
288   %keep increasing the step as fewer and fewer pixels remain for
289   %the redistribution (spread them evenly)
290   stepSize = max(floor(numBins/totalExcess),1);
291   for m=k:stepSize:numBins
292     if imgHist(m) < clipLimit
293       imgHist(m) = imgHist(m)+1;
294       totalExcess = totalExcess - 1; %reduce excess
295       if totalExcess == 0
296         break;
297       end
298     end
299   end
300   
301   k = k+1; %prevent from always placing the pixels in bin #1
302   if k > numBins % start over if numBins was reached
303     k = 1;
304   end
305 end
306 
307 %-----------------------------------------------------------------------------
308 % This function interpolates between neighboring tile mappings to produce a 
309 % new mapping in order to remove artificially induced tile borders.  
310 % Otherwise, these borders would become quite visible.  The resulting
311 % mapping is applied to the input image thus producing a CLAHE processed
312 % image.
313 
314 function claheI = makeClaheImage(I, tileMappings, numTiles, selectedRange,...
315                                  numBins, dimTile)
316 
317 %initialize the output image to zeros (preserve the class of the input image)
318 claheI = I;
319 claheI(:) = 0;
320 
321 %compute the LUT for looking up original image values in the tile mappings,
322 %which we created earlier
323 if ~(isa(I,double) || isa(I,single))
324   k = selectedRange(1)+1 : selectedRange(2)+1;
325   aLut = zeros(length(k),1);
326   aLut(k) = (k-1)-selectedRange(1);
327   aLut = aLut/(selectedRange(2)-selectedRange(1));
328 else
329   % remap from 0..1 to 0..numBins-1
330   if numBins ~= 1
331     binStep = 1/(numBins-1);
332     start = ceil(selectedRange(1)/binStep);
333     stop  = floor(selectedRange(2)/binStep);
334     k = start+1:stop+1;
335     aLut(k) = 0:1/(length(k)-1):1;
336   else
337     aLut(1) = 0; %in case someone specifies numBins = 1, which is just silly
338   end
339 end
340 
341 imgTileRow=1;
342 for k=1:numTiles(1)+1
343   if k == 1  %special case: top row
344     imgTileNumRows = dimTile(1)/2; %always divisible by 2 because of padding
345     mapTileRows = [1 1];
346   else 
347     if k == numTiles(1)+1 %special case: bottom row      
348       imgTileNumRows = dimTile(1)/2;
349       mapTileRows = [numTiles(1) numTiles(1)];
350     else %default values
351       imgTileNumRows = dimTile(1); 
352       mapTileRows = [k-1, k]; %[upperRow lowerRow]
353     end
354   end
355   
356   % loop over columns of the tileMappings cell array
357   imgTileCol=1;
358   for l=1:numTiles(2)+1
359     if l == 1 %special case: left column
360       imgTileNumCols = dimTile(2)/2;
361       mapTileCols = [1, 1];
362     else
363       if l == numTiles(2)+1 % special case: right column
364         imgTileNumCols = dimTile(2)/2;
365         mapTileCols = [numTiles(2), numTiles(2)];
366       else %default values
367         imgTileNumCols = dimTile(2);
368         mapTileCols = [l-1, l]; % right left
369       end
370     end
371     
372     % Extract four tile mappings
373     ulMapTile = tileMappings{mapTileRows(1), mapTileCols(1)};
374     urMapTile = tileMappings{mapTileRows(1), mapTileCols(2)};
375     blMapTile = tileMappings{mapTileRows(2), mapTileCols(1)};
376     brMapTile = tileMappings{mapTileRows(2), mapTileCols(2)};
377 
378     % Calculate the new greylevel assignments of pixels 
379     % within a submatrix of the image specified by imgTileIdx. This 
380     % is done by a bilinear interpolation between four different mappings 
381     % in order to eliminate boundary artifacts.
382     
383     normFactor = imgTileNumRows*imgTileNumCols; %normalization factor  
384     imgTileIdx = {imgTileRow:imgTileRow+imgTileNumRows-1, ...
385                  imgTileCol:imgTileCol+imgTileNumCols-1};
386 
387     imgPixVals = grayxform(I(imgTileIdx{1},imgTileIdx{2}), aLut);
388     
389     % calculate the weights used for linear interpolation between the
390     % four mappings
391     rowW = repmat((0:imgTileNumRows-1),1,imgTileNumCols);
392     colW = repmat(0:imgTileNumCols-1,imgTileNumRows,1);
393     rowRevW = repmat((imgTileNumRows:-1:1),1,imgTileNumCols);
394     colRevW = repmat(imgTileNumCols:-1:1,imgTileNumRows,1);
395     
396     claheI(imgTileIdx{1}, imgTileIdx{2}) = ...
397         (rowRevW .* (colRevW .* double(grayxform(imgPixVals,ulMapTile)) + ...
398                      colW    .* double(grayxform(imgPixVals,urMapTile)))+ ...
399          rowW    .* (colRevW .* double(grayxform(imgPixVals,blMapTile)) + ...
400                      colW    .* double(grayxform(imgPixVals,brMapTile))))...
401         /normFactor;
402     
403     imgTileCol = imgTileCol + imgTileNumCols;    
404   end %over tile cols
405   imgTileRow = imgTileRow + imgTileNumRows;
406 end %over tile rows
407 
408 %-----------------------------------------------------------------------------
409 
410 function [I, selectedRange, fullRange, numTiles, dimTile, clipLimit,...
411           numBins, noPadRect, distribution, alpha, ...
412           int16ClassChange] = parseInputs(varargin)
413 
414 narginchk(1,13);
415 
416 I = varargin{1};
417 validateattributes(I, {uint8, uint16, double, int16, single}, ...
418               {real, 2d, nonsparse, nonempty}, ...
419               mfilename, I, 1);
420 
421 % convert int16 to uint16
422 if isa(I,int16)
423   I = int16touint16(I);
424   int16ClassChange = true;
425 else
426   int16ClassChange = false;
427 end
428 
429 if any(size(I) < 2)
430   error(message(images:adapthisteq:inputImageTooSmall))
431 end
432 
433 %Other options
434 %%%%%%%%%%%%%%
435 
436 %Set the defaults
437 distribution = uniform;
438 alpha   = 0.4;
439 
440 if isa(I, double) || isa(I,single)
441   fullRange = [0 1];
442 else
443   fullRange(1) = I(1);         %copy class of the input image
444   fullRange(1:2) = [-Inf Inf]; %will be clipped to min and max
445   fullRange = double(fullRange);
446 end
447 
448 selectedRange   = fullRange;
449 
450 %Set the default to 256 bins regardless of the data type;
451 %the user can override this value at any time
452 numBins = 256;
453 normClipLimit = 0.01;
454 numTiles = [8 8];
455 
456 checkAlpha = false;
457 
458 validStrings = {NumTiles,ClipLimit,NBins,Distribution,...
459                 Alpha,Range};
460 
461 if nargin > 1
462   done = false;
463 
464   idx = 2;
465   while ~done
466     input = varargin{idx};
467     inputStr = validatestring(input, validStrings,mfilename,PARAM,idx);
468 
469     idx = idx+1; %advance index to point to the VAL portion of the input 
470 
471     if idx > nargin
472       error(message(images:adapthisteq:missingValue, inputStr))
473     end
474     
475     switch inputStr
476 
477      case NumTiles
478        numTiles = varargin{idx};
479        validateattributes(numTiles, {double}, {real, vector, ...
480                            integer, finite,positive},...
481                      mfilename, inputStr, idx);
482 
483        if (any(size(numTiles) ~= [1,2]))
484          error(message(images:adapthisteq:invalidNumTilesVector, inputStr))
485        end
486        
487        if any(numTiles < 2)
488          error(message(images:adapthisteq:invalidNumTilesValue, inputStr))
489        end
490       
491      case ClipLimit
492       normClipLimit = varargin{idx};
493       validateattributes(normClipLimit, {double}, ...
494                     {scalar,real,nonnegative},...
495                     mfilename, inputStr, idx);
496       
497       if normClipLimit > 1
498         error(message(images:adapthisteq:invalidClipLimit, inputStr))
499       end
500      
501      case NBins
502       numBins = varargin{idx};      
503       validateattributes(numBins, {double}, {scalar,real,integer,...
504                           positive}, mfilename, NBins, idx);
505      
506      case Distribution
507       validDist = {rayleigh,exponential,uniform};
508       distribution = validatestring(varargin{idx}, validDist, mfilename,...
509                                   Distribution, idx);
510      
511      case Alpha
512       alpha = varargin{idx};
513       validateattributes(alpha, {double},{scalar,real,...
514                           nonnan,positive,finite},...
515                     mfilename, Alpha,idx);
516       checkAlpha = true;
517 
518      case Range
519       validRangeStrings = {original,full};
520       rangeStr = validatestring(varargin{idx}, validRangeStrings,mfilename,...
521                               Range,idx);
522       
523       if strmatch(rangeStr,original)
524         selectedRange = double([min(I(:)), max(I(:))]);
525       end
526      
527      otherwise
528       error(message(images:adapthisteq:inputString)) %should never get here
529     end
530     
531     if idx >= nargin
532       done = true;
533     end
534     
535     idx=idx+1;
536   end
537 end
538 
539 
540 %% Pre-process the inputs
541 %%%%%%%%%%%%%%%%%%%%%%%%%%
542 
543 dimI = size(I);
544 dimTile = dimI ./ numTiles;
545 
546 %check if tile size is reasonable
547 if any(dimTile < 1)
548   error(message(images:adapthisteq:inputImageTooSmallToSplit, num2str( numTiles )))
549 end
550 
551 if checkAlpha
552   if strcmp(distribution,uniform)
553     error(message(images:adapthisteq:alphaShouldNotBeSpecified, distribution))
554   end
555 end
556 
557 %check if the image needs to be padded; pad if necessary;
558 %padding occurs if any dimension of a single tile is an odd number
559 %and/or when image dimensions are not divisible by the selected 
560 %number of tiles
561 rowDiv  = mod(dimI(1),numTiles(1)) == 0;
562 colDiv  = mod(dimI(2),numTiles(2)) == 0;
563 
564 if rowDiv && colDiv
565   rowEven = mod(dimTile(1),2) == 0;
566   colEven = mod(dimTile(2),2) == 0;  
567 end
568 
569 noPadRect = [];
570 if  ~(rowDiv && colDiv && rowEven && colEven)
571   padRow = 0;
572   padCol = 0;
573   
574   if ~rowDiv
575     rowTileDim = floor(dimI(1)/numTiles(1)) + 1;
576     padRow = rowTileDim*numTiles(1) - dimI(1);
577   else
578     rowTileDim = dimI(1)/numTiles(1);
579   end
580   
581   if ~colDiv
582     colTileDim = floor(dimI(2)/numTiles(2)) + 1;
583     padCol = colTileDim*numTiles(2) - dimI(2);
584   else
585     colTileDim = dimI(2)/numTiles(2);
586   end
587   
588   %check if tile dimensions are even numbers
589   rowEven = mod(rowTileDim,2) == 0;
590   colEven = mod(colTileDim,2) == 0;
591   
592   if ~rowEven
593     padRow = padRow+numTiles(1);
594   end
595 
596   if ~colEven
597     padCol = padCol+numTiles(2);
598   end
599   
600   padRowPre  = floor(padRow/2);
601   padRowPost = ceil(padRow/2);
602   padColPre  = floor(padCol/2);
603   padColPost = ceil(padCol/2);
604   
605   I = padarray(I,[padRowPre  padColPre ],symmetric,pre);
606   I = padarray(I,[padRowPost padColPost],symmetric,post);
607 
608   %UL corner (Row, Col), LR corner (Row, Col)
609   noPadRect.ulRow = padRowPre+1;
610   noPadRect.ulCol = padColPre+1;
611   noPadRect.lrRow = padRowPre+dimI(1);
612   noPadRect.lrCol = padColPre+dimI(2);
613 end
614 
615 %redefine this variable to include the padding
616 dimI = size(I);
617 
618 %size of the single tile
619 dimTile = dimI ./ numTiles;
620 
621 %compute actual clip limit from the normalized value entered by the user
622 %maximum value of normClipLimit=1 results in standard AHE, i.e. no clipping;
623 %the minimum value minClipLimit would uniformly distribute the image pixels
624 %across the entire histogram, which would result in the lowest possible
625 %contrast value
626 numPixInTile = prod(dimTile);
627 minClipLimit = ceil(numPixInTile/numBins);
628 clipLimit = minClipLimit + round(normClipLimit*(numPixInTile-minClipLimit));
629 
630 %-----------------------------------------------------------------------------
View Code

参考上述代码,作者分别用VB和C#实现了该算法,提供个编译好的文件给有兴趣研究该算法的朋友看看效果(不提供源代码的):

      http://files.cnblogs.com/Imageshop/CLAHE.rar

    C#示例代码下载:http://files.cnblogs.com/Imageshop/AdaptHistEqualizeTest.rar

感谢作者!

 

限制对比度自适应直方图均衡(Contrast Limited Adaptive histgram equalization/CLAHE)

标签:

原文地址:http://www.cnblogs.com/Allen-rg/p/5948323.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!