码迷,mamicode.com
首页 > 其他好文 > 详细

Digital biquad filter

时间:2014-08-13 17:56:16      阅读:290      评论:0      收藏:0      [点我收藏+]

标签:http   color   os   io   for   ar   art   cti   

Direct Form 1

The most straightforward implementation is the Direct Form 1, which has the following difference equation:

bubuko.com,布布扣

or, if normalized:

bubuko.com,布布扣

Here the bubuko.com,布布扣, bubuko.com,布布扣 and bubuko.com,布布扣 coefficients determine zeros, and bubuko.com,布布扣, bubuko.com,布布扣 determine the position of the poles.

Flow graph of biquad filter in Direct Form 1:

bubuko.com,布布扣

Direct Form 2

The Direct Form 1 implementation requires four delay registers. An equivalent circuit is the Direct Form 2 implementation, which requires only two delay registers:

bubuko.com,布布扣

The Direct Form 2 implementation is called the canonical form, because it uses the minimal amount of delays, adders and multipliers, yielding in the same transfer function as the Direct Form 1 implementation. The difference equations for DF2 are:

bubuko.com,布布扣

where

bubuko.com,布布扣

 

//ASM example

/////////////////////////////////////////////////////////////
//                                                                     //
//     Process the audio stream                            //
//                                                                    //
/////////////////////////////////////////////////////////////

#include <def21262.h>
#define SECTIONS 3  
/* Number of second-order sections (biquads) */

.section /pm seg_pmco;
.global _Cascaded_IIR_Filter_SIMD;
.extern inbuf;
.extern outbuf;
.extern delaybuf;
.extern coefficients;


_Cascaded_IIR_Filter_SIMD:

/*****************************************************************************
The algorithm:

IIR Second order sections - The cannonic second-order section implemented as
"Direct Form II" biquads.  Note that the SIMD architecture of the 2126x SHARC
family enables the two parallel execution units to filter the left and right
channel simultaneously.  All register moves and memory reads implicitly apply
to the shadow processing element (PEy) as well as the primary computational
unit (PEx).
*****************************************************************************

  Given the most general biquadratic (second order rational polynomial)

                b0 + b1‘*z^-1 + b2‘*z^-2
        H(z) = -------------------------- ,
                a0 + a1‘*z^-1 + a2‘*z^-2

  we may factor out the gain of the transfer function,

                b0     (b1‘/a0)*z^-1 + (b2‘/a0)*z^-2
        H(z) = ---- * -------------------------------
                a0     (a1‘/b0)*z^-1 + (a2‘/b0)*z^-2

  and normalize the coefficients, such that

                    a1*z^-1 + a2*z^-2
        H(z) = A * -------------------
                    b1*z^-1 + b2*z^-2

  where A = gain = b1‘/a0

        a1 = a1‘/b0,  a2 = a2‘/b0,  b1 = b1‘/a0,  b2 = b2‘/a0

  This leaves only four true filter coefficients.  The gain values from
  all of the sections may be combined into a single channel gain applied
  apart from the inner computational loop.  With the simplified coefficients,
  the cannonic direct form II may be written as a pair of difference
  equations:

          w[n] = x[n] + a1*w[n-1] + a2*w[n-2]
          y[n] = w[n] + b1*w[n-1] + b2*w[n-2]

which leads to the following pseudocode:

read(x[n])
f12=0,                                                                     f2=w[n-1],           read(a1)
--- Loop --------------------------------------------------------------------
f12=a1*w[n-1], f8=f8 + f12,                                      f3=w[n-2],           read(a2)
f12=a2*w[n-2], f8=x[n] + a1*w[n-2],                        w[n-1] -> w[n-2]‘, read(b1)
f12=b1*w[n-2], w[n]=x[n] + a1*w[n-2] + a2*w[n-1],  f2=w[n-1],           read(b2)
f12=b2*w[n-1], f8=w[n] + b1*w[n-2],                        w[n] -> w[n-1]‘,   read(a1)
-----------------------------------------------------------------------------
                y[n]=f8 + f12

**************************************************************************/

  /*  Subroutine that implements the pseudocode above */

cascaded_biquad:
  bit set mode1 CBUFEN | PEYEN ;                    // Enable SIMD mode
   
  b0 = delaybuf;
  b1 = b0;
  b3 = inbuf;
  b4 = outbuf;
  b9 = coefficients;
  r0 = SECTIONS;

    f8=dm(i3,m1);                                          // read inbuf
    r12=r12 xor r12,  f2=dm(i0,m1),  f4=pm(i8,m8);
  lcntr=r0, do quads until lce;
          f12=f2*f4,      f8=f8+f12,      f3=dm(i0,m1),     f4=pm(i8,m8);
          f12=f3*f4,      f8=f8+f12,      dm(i1,m1)=f3,     f4=pm(i8,m8);
          f12=f2*f4,      f8=f8+f12,      f2=dm(i0,m1),     f4=pm(i8,m8);
quads:f12=f3*f4,      f8=f8+f12,      dm(i1,m1)=f8,     f4=pm(i8,m8);

  f8=f8+f12;
  rts (db);
  dm(i4,m1)=f8;
  bit clr mode1 CBUFEN | PEYEN;               
  // disable SIMD mode

_Cascaded_IIR_Filter_SIMD.end:


//--------------------------------------------

 

Digital biquad filter,布布扣,bubuko.com

Digital biquad filter

标签:http   color   os   io   for   ar   art   cti   

原文地址:http://www.cnblogs.com/ldjrl2013/p/3910368.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!