标签:
描述
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
0 9 1000000000 -1
0 34 6875
【题意】
斐波那契数列可以用矩阵来求
当求第非常大的一个斐波那契数的后几位时我们可以用矩阵快速幂求解了。
#include<iostream> #include<stdio.h> #include<vector> #include<string.h> using namespace std; typedef vector<int>vec; typedef vector<vec>mat; const int N=10000; mat mul(mat a,mat b)//求两个矩阵的乘积 { mat c(a.size(),vec(b[0].size())); for(int i=0;i<a.size();i++) { for(int k=0;k<b.size();k++) { for(int j=0;j<b[0].size();j++) { c[i][j]=(c[i][j]+a[i][k]*b[k][j])%N; } } } return c; } mat get_ans(mat a,int n)//矩阵的快速幂 { mat b(a.size(),vec(a.size())); for(int i=0;i<a.size();i++) { b[i][i]=1; } while(n>0) { if(n&1) b=mul(b,a); a=mul(a,a); n>>=1; } return b; } int main() { long long int n; while(~scanf("%lld",&n),n>=0) { if(n==-1) break; mat a(2,vec(2)); a[0][0]=1,a[0][1]=1; a[1][0]=1,a[1][1]=0; a=get_ans(a,n); printf("%d\n",a[1][0]); } return 0; }
标签:
原文地址:http://www.cnblogs.com/iwantstrong/p/5962486.html