码迷,mamicode.com
首页 > 其他好文 > 详细

Data Visualizations 5

时间:2016-10-15 02:49:04      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:

To genereate a bar chart with matplotlib:

////////////////////////////////Import libraries and classes/////////////////////////////////////////////////////////////////////

  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import numpy as np
  from pandas.tools.plotting import scatter_matrix
  %matplotlib inline


////////////////////////////////Some practice for generating plot, bars and ticks/////////////////////////////////////////////////////////////////////

 

  recent_grads = pd.read_csv("recent-grads.csv")
  recent_grads.shape[0]
  recent_grads = recent_grads.dropna(axis = 0)
  fig = plt.figure(figsize = (8,8))
  ax1 = fig.add_subplot(2,2,1)
  ax2 = fig.add_subplot(2,2,2)
  ax3 = fig.add_subplot(2,2,3)
  ax4 = fig.add_subplot(2,2,4)

  ax1.hist(recent_grads["ShareWomen"])
  ax2.scatter(recent_grads["Unemployment_rate"],recent_grads["ShareWomen"])
  ax3.scatter(recent_grads["ShareWomen"],recent_grads["Unemployment_rate"])
  ax4.hist(recent_grads["Unemployment_rate"])

  ax1.xaxis.set_visible(False)
  ax2.xaxis.set_visible(False)
  ax2.yaxis.set_visible(False)
  ax4.yaxis.set_visible(False)

 

  ax1.set_ylabel("ShareWomen")
  ax3.set_xlabel("Sharewomen")
  ax3.set_ylabel("Umployment_rate")
  ax4.set_xlabel("Unployment_rate")

  fig.subplots_adjust(wspace=0,hspace=0)

  ax1.set_ylim(0,30)
  ax2.set_ylim(0,1)
  ax3.set_xlim(0,1)
  ax3.set_ylim(0,0.2)
  ax4.set_xlim(0,0.2)

  ax1.set_yticklabels([0,5,10,15,20,25,30])
  ax3.set_yticklabels([0.00,0.05,0.10,0.15])
  ax3.set_xticklabels([0.0,0.2,0.4,0.6,0.8],rotation=90)
  ax4.set_xticklabels([0.00,0.05,0.10,0.15,0.20],rotation=90)

技术分享

 

////////////////////////////////Generate a customized bar chart/////////////////////////////////////////////////////////////////////

 

  recent_grads["ShareMen"] = recent_grads["Men"]/recent_grads["Total"]
  Arts_column = pd.DataFrame(recent_grads[recent_grads["Major_category"]=="Arts"])

  Arts_fig = plt.figure(figsize=(8,8))
  Arts_plot = Arts_fig.add_subplot(1,1,1)

  locs = np.arange(len(Arts_column["Major"]))

  offset_locs = locs + 0.35

  Arts_plot.set_xticks(offset_locs)

  Arts_plot.set_xticklabels(Arts_column["Major"].tolist(),rotation = 90)

  bar_1 = Arts_plot.bar(locs,Arts_column["ShareMen"].tolist(),0.35)

  bar_2 = Arts_plot.bar(offset_locs,Arts_column["ShareWomen"].tolist(),0.35,color = "green")

  plt.legend((bar_1,bar_2),("ShareMen","ShareWomen"),loc = "upper left")

  Arts_plot.grid(b="on",which = "major",axis = "both")

 

技术分享

 

Data Visualizations 5

标签:

原文地址:http://www.cnblogs.com/kingoscar/p/5962596.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!