标签:
Storm是一个开源的实时计算系统,它提供了一系列的基本元素用于进行计算:Topology、Stream、Spout、Bolt等等。
在Storm中,一个实时应用的计算任务被打包作为Topology发布,这同Hadoop的MapReduce任务相似。但是有一点不同的是:在Hadoop中,MapReduce任务最终会执行完成后结束;而在Storm中,Topology任务一旦提交后永远不会结束,除非你显示去停止任务。
计算任务Topology是由不同的Spouts和Bolts,通过数据流(Stream)连接起来的图。下面是一个Topology的结构示意图:
其中包含有:
Spout:Storm中的消息源,用于为Topology生产消息(数据),一般是从外部数据源(如Message Queue、RDBMS、NoSQL、Realtime Log)不间断地读取数据并发送给Topology消息(tuple元组)。
Bolt:Storm中的消息处理者,用于为Topology进行消息的处理,Bolt可以执行过滤, 聚合, 查询数据库等操作,而且可以一级一级的进行处理。
最终,Topology会被提交到storm集群中运行;也可以通过命令停止Topology的运行,将Topology占用的计算资源归还给Storm集群。
数据流(Stream)是Storm中对数据进行的抽象,它是时间上无界的tuple元组序列。在Topology中,Spout是Stream的源头,负责为Topology从特定数据源发射Stream;Bolt可以接收任意多个Stream作为输入,然后进行数据的加工处理过程,如果需要,Bolt还可以发射出新的Stream给下级Bolt进行处理。
下面是一个Topology内部Spout和Bolt之间的数据流关系:
Topology中每一个计算组件(Spout和Bolt)都有一个并行执行度,在创建Topology时可以进行指定,Storm会在集群内分配对应并行度个数的线程来同时执行这一组件。
那么,有一个问题:既然对于一个Spout或Bolt,都会有多个task线程来运行,那么如何在两个组件(Spout和Bolt)之间发送tuple元组呢?
Storm提供了若干种数据流分发(Stream Grouping)策略用来解决这一问题。在Topology定义时,需要为每个Bolt指定接收什么样的Stream作为其输入(注:Spout并不需要接收Stream,只会发射Stream)。
目前Storm中提供了以下7种Stream Grouping策略:Shuffle Grouping、Fields Grouping、All Grouping、Global Grouping、Non Grouping、Direct Grouping、Local or shuffle grouping,具体策略可以参考这里。
以上介绍了一些Storm中的基本概念,可以看出,Storm中Stream的概念是Topology内唯一的,只能在Topology内按照“发布-订阅”方式在不同的计算组件(Spout和Bolt)之间进行数据的流动,而Stream在Topology之间是无法流动的。
这一点限制了Storm在一些场景下的应用,下面通过一个简单的实例来说明。
假设现在有一个Topology1的结构如下:通过Spout产生数据流后,依次需要经过Filter Bolt,Join Bolt,Business1 Bolt。其中,Filter Bolt用于对数据进行过滤,Join Bolt用于数据流的聚合,Business1 Bolt用于进行一个实际业务的计算逻辑。
目前这个Topology1已经被提交到Storm集群运行,而现在我们又有了新的需求,需要计算一个新的业务逻辑,而这个Topology的特点是和Topology1公用同样的数据源,而且前期的预处理过程完全一样(依次经历Filter Bolt和Join Bolt),那么这时候Storm怎么来满足这一需求?据个人了解,有以下几种“曲折”的实现方式:
1) 第一种方式:首先kill掉已经在集群中运行的Topology1计算任务,然后实现Business2 Bolt的计算逻辑,并重新打包形成一个新的Topology计算任务jar包后,提交到Storm集群中重新运行,这时候Storm内的整体Topology结构如下:
这种方式的缺点在于:由于要重启Topology,所以如果Spout或Bolt有状态则会丢失掉;同时由于Topology结构发生了变化,因此重新运行Topology前需要对程序的稳定性、正确性进行验证;另外Topology结构的变化也会带来额外的运维开销。
2) 第二种方式:完全开发部署一套新的Topology,其中前面的公共部分的Spout和Bolt可以直接复用,只需要重新开发新的计算逻辑Business2 Bolt来替换原有的Business1 Bolt即可。然后重新提交新的Topology运行。这时候Storm内的整体Topology结构如下:
这种方式的缺点在于:由于两个Topology都会从External Data Source读取同一份数据,无疑增加了External Data Source的负载压力;而且会导致同样的数据在Storm集群内被传输相同的两份,被同样的计算单元Bolt进行处理,浪费了Storm的计算资源和网络传输带宽。假设现在不止有两个这样的Topology计算任务,而是有N个,那么对Storm的计算Slot的浪费很严重。
注意:上述两种方式还有一个公共的缺点——系统可扩展性不好,这意味着不管哪种方式,只要以后有这种新增业务逻辑的需求,都需要进行复杂的人工操作或线性的资源浪费现象。
3) 第三种方式:OK,看了以上两种方式后,也许你会提出下面的解决方案:通过Kafka这样的消息中间件,实现不同Topology的Spout共享数据源,而且这样可以做到消息可靠传输、消息rewind回传等,好处是对于Storm来说,已经有了storm-kafka插件的支持。这时候Storm内的整体Topology结构如下:
这种实现方式可以通过引入一层消息中间件减少对External Data Source的重复访问的压力,而且可以通过消息中间件层,屏蔽掉External Data Source的细节,如果需要扩展新的业务逻辑,只需要重新部署运行新的Topology,应该说是现有Storm版本下很好的实现方式了。不过消息中间件的引入,无疑将给系统带来了一定的复杂性,这对于Storm上的应用开发来说提高了门槛。
值得注意的是,方案三中仍遗留有一点问题没有解决:对于Storm集群来说,这种方式还是没有能够从根本上避免数据在Storm不同Topology内的重复发送与处理。这是由于Storm的数据流模型上的限制所导致的,如果Storm实现了不同Topology之间Stream的共享,那么这一问题也就迎刃而解了。
个人工作中有幸参与过一个流处理框架的开发与应用。下面我们来简单看看其中所采用的数据流模型:
其中:
1)数据流(data stream):时间分布和数量上无限的一系列数据记录的集合体;
2)数据记录(data record):数据流的最小组成单元,每条数据记录包括 3 类数据:所属数据流名称(stream name)、用于路由的数据(keys)和具体数据处理逻辑所需的数据(value);
3)数据处理任务定义(task definition):定义一个数据处理任务的基本属性,无法直接被执行,必须特化为具体的任务实例。其基本属性包括:
4)数据处理任务实例(task instance):对一个数据处理任务定义进行具体约束后,可推送到某个处理结点上运行的逻辑实体。附加下列属性:
5)数据处理结点(node):可容纳多个数据处理任务实例运行的实体机器,每个数据处理结点的IPv4地址必须保证唯一。
该分布式流处理系统由多个数据处理结点(node)组成;每个数据处理结点(node)上运行有多个数据任务实例(task instance);每个数据任务实例(task instance)属于一个数据任务定义(task definition),任务实例是在任务定义的基础上,添加了输入流过滤条件和强制输出周期属性后,可实际推送到数据处理结点(node)上运行的逻辑实体;数据任务定义(task definition)包含输入数据流、数据处理逻辑以及输出数据流属性。
该系统中,通过分布式应用程序协调服务ZooKeeper集群存储以上数据流模型中的所有配置信息;不同的数据处理节点统一通过ZooKeeper集群获取数据流的配置信息后进行任务实例的运行与停止、数据流的流入和流出。
同时,每个数据处理任务可以接受流系统中已存在的任意数据流(data stream)作为输入,并产出新的任意名称的数据流(data stream),被其他结点上运行的任务实例订阅。不同结点之间对于各个数据流(data stream)的订阅关系,通过ZooKeeper集群来动态感知并负责通知流系统做出变化。
至于两个系统的实现细节,我们先不去做具体比较,下面仅列出二者在数据流模型上的一些不同之处(这里并不是为了全面对比二者的不同之处,只是列出其中的关键部分):
1) 在Storm中,数据流Stream是在Topology内进行定义,并在Topology内进行传输的;而在上面提到的流处理系统中,数据流Stream是在整个系统内全局唯一的,可以在整个集群内被订阅。
2) 在Storm中,数据流Stream的发布和订阅都是静态的,所谓静态是指数据流的发布与订阅关系在向Storm集群提交Topology计算任务时,被一次性生成的,这一关系在Topology的运行过程中是不能被改变的;而在上面提到的流处理系统中,数据流Stream的发布和订阅都是动态的,即数据处理任务task可以动态的发布Stream,也可以动态的订阅系统内已经生成的任意Stream,数据流的订阅关于通过分布式应用程序协调服务ZooKeeper集群的动态节点来维护管理。
有了以上的对比,我们不难发现,对于本文所举的应用场景实例,Storm的数据流模式尚不能很方便的支持,而在这里提到的这个流处理系统的全局数据流模型下,这一应用场景的需求可以很方便的满足。
1.什么是Topology?
2.如何创建Topology?
3.Topology的worker数由谁来配置?
4.Topology中某个bolt的executor数由谁来指定?
5.Supervisor、worker、Executor、Task、Spout、Bolt之间的关系?
在创建Storm的Topology时,我们通常使用如下代码:
builder.setBolt("cpp", new CppBolt(), 3).setNumTasks(5).noneGrouping(pre_name);
Config conf = new Config();
conf.setNumWorkers(3);
参数1:bolt名称 "cpp"
参数2:bolt类型 CppBolt
参数3:bolt的并行数,parallelismNum,即运行topology时,该bolt的线程数
setNumTasks() 设置bolt的task数
noneGrouping() 设置输入流方式及字段
conf.setNumWorkers()设置worker数据。
经过多次试验总结,得出如下结论:
1)Topology的worker数通过config设置,即执行该topology的worker(java)进程数。它可以通过storm rebalance 命令任意调整。
2) Topology中某个bolt的executor数,即parallelismNum,即执行该bolt的线程数,在setBolt时由第三个参数指定。它可以通过storm rebalance 命令调整,但最大不能超过该bolt的task数;
3) bolt的task数,通过setNumTasks()设置。(也可不设置,默认取bolt的executor数),无法在运行时调整。
4)Bolt实例数,这个比较特别,它和task数相等。有多少个task就会new 多少个Bolt对象。而这些Bolt对象在运行时由Bolt的thread进行调度。也即是说
builder.setBolt("cpp", new CppBolt(), 3).setNumTasks(5).noneGrouping(pre_name);
会创建3个线程,但有内存中会5个CppBolt对象,三个线程调度5个对象。
每台Supervisor上运行着若干个worker进程,在Configure对象中可以配置worker的数量,conf.setNumWorkers(number);
每个Workder进行上运行着若干个Executor执行线程,就是所谓的Task任务。
在TopologyBuilder对象中可以配置Task的数量,topologyBuilder.setNumTasks(number);这些Task任务指的是Spout或者Bolt任务。
在TopologyBuilder对象中可以配置Spout、Bolt的任务的数量。
topologyBuilder.setSpout(“spout tag name”,new XxSpout(),number);
topologyBuilder.setBolt(“bolt tag name”,new XxBolt(),number);
默认情况下# executor = #tasks即一个Executor中运行着一个Task。Spout或者Bolt的Task个数一旦指定之后就不能改变了,而Executor的数量可以根据情况来进行动态的调整。
一句话介绍,每台worker node上可以运行很多个worker,每个worker会开辟很多Executor线程来执行Task。在Storm看来,spout和bolt都是task。
标签:
原文地址:http://www.cnblogs.com/zpfbuaa/p/5964595.html