标签:
线性变换就是矩阵的变换,而任何矩阵的变换可以理解为 一个正交变换+伸缩变换+另一个正交变换。(正交变换可以暂时理解为 不改变大小以及正交性的旋转/反射 等变换)A*P = y*P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长/缩短了一点(而不是毫无规律的多维变换)。y描述沿着这个方向上拉伸的比例。
对于满秩的n*n方阵,做特征值变换,非满秩的矩阵,做奇异值变换,差别在于前者是个对角阵,后者形成对角阵和零矩阵合成的矩阵。
下面是更直观的例子(转自知乎https://www.zhihu.com/question/21082351):
通过上面的举例我们可以总结出几条。
通过上面的几个步骤,我们可以看出,任何一组向量构成的坐标系,都可以通过化简,正交,对角,规范的过程,将任何乱七八糟莫名其妙的坐标系变换成笛卡尔坐标系。那这么做有什么用呢?到这里我开了一下脑洞:
假如说,平面内有两个椭圆,将直角坐标系的原点放在一个椭圆的长轴和短轴交点处,这样就可以得到这个椭圆的标准方程,就是高中课本上那个。由于这两个椭圆的位置相对,这样一来另一个椭圆的位置也就定下来了,可惜很难看,长得很歪,很难用方程表示。这时就可以以这个椭圆为原点再建立一个坐标系,并且在这个坐标系下用标准方程表示出来,这样两个椭圆都有了方程来表示,问题就化简为了两个坐标系之间的关系,这时再用矩阵来运算就好了。可惜这里不能画矩阵,关于矩阵的好多问题都不能解释。
标签:
原文地址:http://www.cnblogs.com/marszhw/p/5972871.html