码迷,mamicode.com
首页 > 其他好文 > 详细

Data Cleaning 1

时间:2016-10-19 09:29:09      阅读:215      评论:0      收藏:0      [点我收藏+]

标签:

1. Read mutiple data files;

  import pandas as pd

  data_files = [
  "ap_2010.csv",
  "class_size.csv",
  "demographics.csv",
  "graduation.csv",
  "hs_directory.csv",
  "sat_results.csv"
  ]

  data = {}

  for f in data_files:
  file = pd.read_csv("schools/{0}".format(f)) #Format string syntax
  f = f.replace(".csv","")#Delete all the .csv and save as file name
  data[f] = file

2. Read .txt file and combine function:

  all_survey = pd.read_csv("schools/survey_all.txt",delimiter = "\t", encoding = "windows-1252") #what is the meaning of delimiter and encoding?
  d75_survey = pd.read_csv("schools/survey_d75.txt",delimiter = "\t", encoding = "windows-1252") 
  survey = pd.concat([all_survey,d75_survey],axis = 0) #combine function

Data Cleaning 1

标签:

原文地址:http://www.cnblogs.com/kingoscar/p/5975884.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!