码迷,mamicode.com
首页 > 其他好文 > 详细

scrapy爬虫之爬取汽车信息

时间:2016-10-20 14:35:25      阅读:251      评论:0      收藏:0      [点我收藏+]

标签:

scrapy爬虫还是很简单的,主要是三部分:spider,item,pipeline

其中后面两个也是通用套路,需要详细解析的也就是spider。

 

具体如下:

 

在网上找了几个汽车网站,后来敲定,以易车网作为爬取站点

原因在于,其数据源实在是太方便了。

看这个页面,左边按照品牌排序,搜索子品牌,再挨个查看信息即可

技术分享

 

按照通常的思路,是需要手动解析左边这列表

找出每个品牌的链接页面

结果分析源码发现,网站直接通过js生成的导航栏,直接通过这个链接生成的json即可获得所有的信息

http://api.car.bitauto.com/CarInfo/getlefttreejson.ashx?tagtype=baojia&pagetype=masterbrand&objid=2

直接解析其中需要的数据即可

如下图

技术分享

可以用json解析,我没尝试,我采用最简单的正则匹配提取

代码很简单

json_str = """
上面全部的数据
JsonpCallBack({char:{A:1,B:1,C:1,D:1,E:0,F:1,G:1,H:1,I:0,J:1,K:1,L:1,M:1,
N:1,O:1,P:1,Q:1,R:1,S:1,T:1,U:0,V:0,W:1,X:1,Y:1,Z:1}
,brand:{A:[{type:"mb",id:9,name:"奥迪",url:"/mb9/",cur:0,num:95546}
~~~~~~~~~~太长 剩余的代码中我省略了 """ import re result = re.findall(r‘\/mb\d+\/‘, json_str) print result

#mb_pages = [‘/mb9/‘, ‘/mb97/‘, ] #192条

  

所以,品牌页的代码:

    def parse(self, response):
        page_root = ‘price.bitauto.com‘  #response.url.split(‘/‘)[2]  #‘price.bitauto.com‘
        mb_pages = [‘/mb2/‘, ‘/mb3/‘,‘/mb9/‘,
                    ] #/mb9/audi, /mb2/benz, /mb3/bmw

        for info in mb_pages:
            page_href = info
            page_url = ‘http://‘+ page_root + page_href
            yield scrapy.Request(url=page_url, meta={‘treeurl‘: info}, callback=self.parse_brand_page)

品牌页面下面的子品牌

技术分享

元素定位,爬取,代码如下

    def parse_brand_page(self,response):
        #命令行测试 scrapy shell http://price.bitauto.com/mb196/
        page_xpath = ‘//div[@id="c_result"]/div[@class="carpic_list"]/ul/li‘       
        page_root = ‘price.bitauto.com‘  #response.url.split(‘/‘)[2]  #‘price.bitauto.com‘
        treeurl = response.meta[‘treeurl‘]
        brand = response.xpath(‘//div[@class="tree_navigate"]/div/strong/text()‘).extract()[0]
        for info in response.xpath(page_xpath):
            page_href = info.xpath(‘a/attribute::href‘).extract()[0]
            page_url = ‘http://‘+ page_root + page_href
            #print page_url
            yield scrapy.Request(url=page_url, meta={‘treeurl‘: treeurl, ‘brand‘: brand}, callback=self.parse_car_page)

  到款型详情页,然而,需要的是参数页,,继续request跳转

    def parse_car_page(self,response):
        peizhi_xpath = ‘//a[@id="linkOutCs"]/@href‘
        page_url = response.xpath(peizhi_xpath).extract()[0]
        treeurl = response.meta[‘treeurl‘]
        brand = response.meta[‘brand‘]       
        yield scrapy.Request(url=page_url, meta={‘treeurl‘: treeurl, ‘brand‘: brand}, callback=self.parse_detail_page)

  最后到参数页,这才是我们需要的数据啊

技术分享

分析源代码发现,所有的数据依旧是在js代码以字符串形式存在的,这种代码,正是正则的用武之地啊技术分享

数据字符串是三个[[[]]]嵌套的字符串,处理方式为

        ff = re.search(‘\[\[\[.*\]\]\]‘,response.body).group() #str
        infos = eval(ff)

  ff获得的是整个[[[]]]的内容,然后用eval转化成python的值,然后再用循环取对应位置的数据即可。代码如下

    def parse_detail_page(self,response):
        #命令行测试 scrapy shell http://car.bitauto.com/changchengh5/peizhi/

        ff = re.search(‘\[\[\[.*\]\]\]‘,response.body).group() #str
        infos = eval(ff)

        for s_second in infos:
            item = BitautoCarItem()

            item[‘carid‘] =s_second[0][0] #"117388" 
            item[‘url‘] = response.url
            item[‘brand‘] = response.meta[‘brand‘]  ###    
            item[‘treeurl‘] = response.meta[‘treeurl‘]  ###            
            item[‘brandurl‘] = s_second[0][6] ##changchengh5,benchieji            
            item[‘brandmodel4‘] = s_second[0][4] #"哈弗H5" "奔驰E级"
            item[‘brandmodel5‘] = s_second[0][5] ###            
            item[‘version‘] = s_second[0][1] #"经典版 2.0T 手动 两驱 精英型",
            item[‘image‘] = s_second[0][2]
            item[‘cyear‘] = s_second[0][7]
            item[‘ctype‘] = s_second[0][12] #"SUV"
            item[‘color‘] = s_second[0][13]
            item[‘price1‘] = s_second[1][0] # 厂家指导价
            item[‘price2‘] = s_second[1][1] # 商家报价
            item[‘displacement‘] = s_second[1][5]  #"2.0", 排量(L)
            item[‘shiftgears‘] = s_second[1][6] # "6"
            item[‘shifttype‘] = s_second[1][7]  # "手动"
            item[‘clength‘] = s_second[2][0] # 长宽高,为了清楚表示,加了前缀c
            item[‘cwidth‘] = s_second[2][1] # 长宽高,为了清楚表示,加了前缀c
            item[‘cheight‘] = s_second[2][2] # 长宽高,为了清楚表示,加了前缀c
            item[‘wheelbase‘] = s_second[2][3]  #轴距
            item[‘mingrounddistance‘] = s_second[2][8] #最小离地间隙
            item[‘motor‘] = s_second[3][1] # 发动机型号
            item[‘intaketype‘] = s_second[3][5]  # 进气形式
            item[‘maxhorsepower‘] = s_second[3][13] # 最大马力(Ps)
            item[‘maxpower‘] = s_second[3][14] # 最大功率(kW)
            item[‘maxrpm‘] = s_second[3][15] # 最大功率转速(rpm)
            item[‘oiltype‘] = s_second[3][19] # 燃料类型
            item[‘oilsupply‘] = s_second[3][21]  # 供油方式
            item[‘tankvolume‘] = s_second[3][22] # 燃油箱容积(L)
            item[‘drivetype‘] = s_second[5][6] # 驱动方式
            item[‘braketype‘] = s_second[5][5] # 驻车制动类型
            item[‘frontwheel‘] = s_second[7][0] # 前轮
            item[‘backwheel‘] = s_second[7][1] # 后轮
            yield item

  

以上,整个爬取代码,为:

#!/usr/bin/env python
# coding=utf-8

import scrapy
import re
from Car_spider.items import BitautoCarItem


class BitautoSpider(scrapy.Spider):
    name = ‘bitauto‘
    allowed_domains = [‘bitauto.com‘]
    start_urls = [‘http://price.bitauto.com/mb2/‘,]


    def parse(self, response):
        page_root = ‘price.bitauto.com‘  #response.url.split(‘/‘)[2]  #‘price.bitauto.com‘
        mb_pages = [‘/mb2/‘, ‘/mb3/‘,‘/mb9/‘,
                    ] #/mb9/audi, /mb2/benz, /mb3/bmw

        for info in mb_pages:
            page_href = info
            page_url = ‘http://‘+ page_root + page_href
            yield scrapy.Request(url=page_url, meta={‘treeurl‘: info}, callback=self.parse_brand_page)


    def parse_brand_page(self,response):
        #命令行测试 scrapy shell http://price.bitauto.com/mb196/
        page_xpath = ‘//div[@id="c_result"]/div[@class="carpic_list"]/ul/li‘       
        page_root = ‘price.bitauto.com‘  #response.url.split(‘/‘)[2]  #‘price.bitauto.com‘
        treeurl = response.meta[‘treeurl‘]
        brand = response.xpath(‘//div[@class="tree_navigate"]/div/strong/text()‘).extract()[0]
        for info in response.xpath(page_xpath):
            page_href = info.xpath(‘a/attribute::href‘).extract()[0]
            page_url = ‘http://‘+ page_root + page_href
            #print page_url
            yield scrapy.Request(url=page_url, meta={‘treeurl‘: treeurl, ‘brand‘: brand}, callback=self.parse_car_page)


    def parse_car_page(self,response):
        peizhi_xpath = ‘//a[@id="linkOutCs"]/@href‘
        page_url = response.xpath(peizhi_xpath).extract()[0]
        treeurl = response.meta[‘treeurl‘]
        brand = response.meta[‘brand‘]       
        yield scrapy.Request(url=page_url, meta={‘treeurl‘: treeurl, ‘brand‘: brand}, callback=self.parse_detail_page)


    def parse_detail_page(self,response):
        #命令行测试 scrapy shell http://car.bitauto.com/changchengh5/peizhi/

        ff = re.search(‘\[\[\[.*\]\]\]‘,response.body).group() #str
        infos = eval(ff)

        for s_second in infos:
            item = BitautoCarItem()

            item[‘carid‘] =s_second[0][0] #"117388" 
            item[‘url‘] = response.url
            item[‘brand‘] = response.meta[‘brand‘]  ###    
            item[‘treeurl‘] = response.meta[‘treeurl‘]  ###            
            item[‘brandurl‘] = s_second[0][6] ##changchengh5,benchieji            
            item[‘brandmodel4‘] = s_second[0][4] #"哈弗H5" "奔驰E级"
            item[‘brandmodel5‘] = s_second[0][5] ###            
            item[‘version‘] = s_second[0][1] #"经典版 2.0T 手动 两驱 精英型",
            item[‘image‘] = s_second[0][2]
            item[‘cyear‘] = s_second[0][7]
            item[‘ctype‘] = s_second[0][12] #"SUV"
            item[‘color‘] = s_second[0][13]
            item[‘price1‘] = s_second[1][0] # 厂家指导价
            item[‘price2‘] = s_second[1][1] # 商家报价
            item[‘displacement‘] = s_second[1][5]  #"2.0", 排量(L)
            item[‘shiftgears‘] = s_second[1][6] # "6"
            item[‘shifttype‘] = s_second[1][7]  # "手动"
            item[‘clength‘] = s_second[2][0] # 长宽高,为了清楚表示,加了前缀c
            item[‘cwidth‘] = s_second[2][1] # 长宽高,为了清楚表示,加了前缀c
            item[‘cheight‘] = s_second[2][2] # 长宽高,为了清楚表示,加了前缀c
            item[‘wheelbase‘] = s_second[2][3]  #轴距
            item[‘mingrounddistance‘] = s_second[2][8] #最小离地间隙
            item[‘motor‘] = s_second[3][1] # 发动机型号
            item[‘intaketype‘] = s_second[3][5]  # 进气形式
            item[‘maxhorsepower‘] = s_second[3][13] # 最大马力(Ps)
            item[‘maxpower‘] = s_second[3][14] # 最大功率(kW)
            item[‘maxrpm‘] = s_second[3][15] # 最大功率转速(rpm)
            item[‘oiltype‘] = s_second[3][19] # 燃料类型
            item[‘oilsupply‘] = s_second[3][21]  # 供油方式
            item[‘tankvolume‘] = s_second[3][22] # 燃油箱容积(L)
            item[‘drivetype‘] = s_second[5][6] # 驱动方式
            item[‘braketype‘] = s_second[5][5] # 驻车制动类型
            item[‘frontwheel‘] = s_second[7][0] # 前轮
            item[‘backwheel‘] = s_second[7][1] # 后轮
            yield item
  

  前面只是从页面层次去parse,没叙述item,因为这个也简单,没啥需要叙述的。其定义代码为

class BitautoCarItem(scrapy.Item):

    carid = scrapy.Field()
    url = scrapy.Field()
    treeurl = scrapy.Field()    
    brand = scrapy.Field() ###
    brandurl = scrapy.Field() ###    
    brandmodel4 = scrapy.Field() #"哈弗H5"
    brandmodel5 = scrapy.Field() #"哈弗H5"    
    version = scrapy.Field() #"经典版 2.0T 手动 两驱 精英型",
    image = scrapy.Field()
    cyear = scrapy.Field()
    ctype = scrapy.Field() #"SUV"
    color = scrapy.Field()
    price1 = scrapy.Field() # 厂家指导价
    price2 = scrapy.Field() # 商家报价
    displacement = scrapy.Field()  # "2.0", 排量(L)
    shiftgears = scrapy.Field()  # "6"
    shifttype = scrapy.Field()  # "手动"
    clength = scrapy.Field() # 长宽高,为了清楚表示,加了前缀c
    cwidth = scrapy.Field() # 长宽高,为了清楚表示,加了前缀c
    cheight = scrapy.Field() # 长宽高,为了清楚表示,加了前缀c
    wheelbase = scrapy.Field()  #轴距
    mingrounddistance = scrapy.Field() #最小离地间隙
    motor = scrapy.Field() # 发动机型号
    intaketype = scrapy.Field() # 进气形式
    maxhorsepower = scrapy.Field() # 最大马力(Ps)
    maxpower = scrapy.Field() # 最大功率(kW)
    maxrpm = scrapy.Field() # 最大功率转速(rpm)
    oiltype = scrapy.Field() # 燃料类型
    oilsupply = scrapy.Field()  # 供油方式
    tankvolume = scrapy.Field() # 燃油箱容积(L)
    drivetype = scrapy.Field() # 驱动方式
    braketype = scrapy.Field() # 驻车制动类型
    frontwheel = scrapy.Field() # 前轮胎规格
    backwheel = scrapy.Field() # 后轮胎规格

  

至于Pipeline,随意写即可,也是套路而已,mongodb的pipeline如下

class MongoDBPipeline(object):
    def __init__(self):
        connection = MongoClient(
            settings[‘MONGODB_SERVER‘],
            settings[‘MONGODB_PORT‘]
        )
        db=connection[settings[‘MONGODB_DB‘]]
        self.collection = db[settings[‘MONGODB_COLLECTION‘]]

    def process_item(self, item, spider):
        self.collection.insert(dict(item))

  也可以是关系型数据库,如postgresql

class CarsPgPipeline(object):
    def __init__(self):
        #reload(sys)
        #sys.setdefaultencoding(‘utf-8‘)
        self.connection = psycopg2.connect(
                database= settings[‘POSTGRES_DB‘],
                user= settings[‘POSTGRES_USER‘],
                password= settings[‘POSTGRES_PW‘],
                host= settings[‘POSTGRES_SERVER‘],
                port= settings[‘POSTGRES_PORT‘],
            )
        self.cursor = self.connection.cursor()


    def process_item(self,item,spider):
        if instance(item, BitautoCarItem):
            _sql = """INSERT INTO BitautoCar(carid,url,treeurl,brand,brandurl,brandmodel4,brandmodel5,version,image,cyear,ctype,color,price1,price2,displacement,shiftgears,shifttype,clength,cwidth,cheight,wheelbase,mingrounddistance,motor,intaketype,maxhorsepower,maxpower,maxrpm,oiltype,oilsupply,tankvolume,drivetype,braketype,frontwheel,backwheel) VALUES (‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘,‘%s‘);"""%( item[‘carid‘],item[‘url‘],item[‘treeurl‘],item[‘brand‘],item[‘brandurl‘],item[‘brandmodel4‘],item[‘brandmodel5‘],item[‘version‘],item[‘image‘],item[‘cyear‘],item[‘ctype‘],item[‘color‘],item[‘price1‘],item[‘price2‘],item[‘displacement‘],item[‘shiftgears‘],item[‘shifttype‘],item[‘clength‘],item[‘cwidth‘],item[‘cheight‘],item[‘wheelbase‘],item[‘mingrounddistance‘],item[‘motor‘],item[‘intaketype‘],item[‘maxhorsepower‘],item[‘maxpower‘],item[‘maxrpm‘],item[‘oiltype‘],item[‘oilsupply‘],item[‘tankvolume‘],item[‘drivetype‘],item[‘braketype‘],item[‘frontwheel‘],item[‘backwheel‘])

        try:
            self.cursor.execute(self.cursor.mogrify(_sql) )     
            self.connection.commit()

        except Exception, e:
            self.connection.rollback()
            print "Error: %s" % e

        return item

  项目setting部分

BOT_NAME = ‘Car_spider‘

SPIDER_MODULES = [‘Car_spider.spiders‘]
NEWSPIDER_MODULE = ‘Car_spider.spiders‘

ITEM_PIPELINES = {
    ‘Car_spider.pipelines.CarsPgPipeline‘ : 1000,
}

MONGODB_SERVER = ‘localhost‘
MONGODB_PORT = 27017
MONGODB_DB = ‘car‘
MONGODB_COLLECTION = ‘kache360‘ #‘bitantotest‘

POSTGRES_SERVER = ‘localhost‘
POSTGRES_PORT = 5432
POSTGRES_DB = ‘yourdb‘
POSTGRES_USER = ‘yourname‘
POSTGRES_PW = ‘123456‘

ROBOTSTXT_OBEY = True
DOWNLOAD_DELAY = 3
RANDOMIZE_DOWNLOAD_DELAY = True

  

scrapy爬虫之爬取汽车信息

标签:

原文地址:http://www.cnblogs.com/xiaoyy3/p/5980334.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!