Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given
Given
[0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.Thanks Marcos for contributing this image!
? Solve this problem[解题思路]
对于任何一个坐标,检查其左右的最大坐标,然后相减就是容积。所以,
1. 从左往右扫描一遍,对于每一个坐标,求取左边最大值。
2. 从右往左扫描一遍,对于每一个坐标,求最大右值。
3. 再扫描一遍,求取容积并加和。
#2和#3可以合并成一个循环,
扫描3遍数组的方法:
public class Solution { public int trap(int[] height) { if (height == null || height.length == 0) { return 0; } int len = height.length; int res = 0; int[] leftMax = new int[len]; int[] rightMax = new int[len]; leftMax[0] = height[0]; rightMax[len - 1] = height[len - 1]; for (int i = 1; i < len; i++) { leftMax[i] = Math.max(leftMax[i - 1], height[i]); } for (int i = len - 2; i >= 0; i--) { rightMax[i] = Math.max(rightMax[i + 1], height[i]); } for (int i = 1; i < len - 1; i++) { int amount = Math.min(leftMax[i - 1], rightMax[i + 1]) - height[i]; if (amount > 0) { res += amount; } } return res; } }
可以简化为对撞型指针,扫描1遍数组,总体思想类似
其实可以看作是一个动态规划的滚动数组优化,把leftMax, rightMax优化为o(1)变量
public class Solution { public int trap(int[] height) { if (height == null || height.length < 3) { return 0; } int len = height.length; int leftHeight = height[0]; int rightHeight = height[len - 1]; int left = 0; int right = len - 1; int res = 0; while (left < right) { if (height[left] < height[right]) { if (leftHeight > height[left]) { res += leftHeight - height[left]; } else { leftHeight = height[left]; } left++; } else { if (rightHeight > height[right]) { res+= rightHeight - height[right]; } else { rightHeight = height[right]; } right--; } } // end of left < right return res; } }
2. //todo