标签:struct 大于 最大值 分享 break number alt 状态 val
AVL,平衡二叉查找树。删除,插入,查找的复杂度都是O(logn)。它是一棵二叉树。对于每个节点来说,它的左孩子的键值都小于它,右孩子的键值都大于它。对于任意一个节点,它的左右孩子的高度差不大于1。树的高度的定义为:空节点的高度为0,非空节点的高度为左右孩子高度的最大值加1。
在插入删除过程中,会出现不平衡的时候。这时,会通过以下方式进行旋转保持树的平衡。下图中每一列最后一行是旋转后的结果,上面两行是对应的初始化状态。
1 插入。在以某个节点为根的子树中插入一个节点后,有可能使得该节点的左右子树的高度差大于1(其实此时的高度差是2),那么视情况进行LL,RR,LR,RL四种旋转中的一种可维持树的平衡。
2 删除。删除的键值小于当前节点键值时,在左子树中删除;大于当前节点键值时在右子树中进行删除;否则就是删除当前节点。删除当前节点时,找到后继节点,然后将后继结点替换当前节点,然后递归地删除这个后继结点即可。
template<class _ValyeType,class _FuncType> class CAVLTree { protected: struct AVLTreeNode { _ValyeType m_iValue; AVLTreeNode* m_pLeftSon; AVLTreeNode* m_pRightSon; int m_nHeight; int m_nValueNumber; }; AVLTreeNode* m_pRoot; _FuncType* m_pCompareFunc; AVLTreeNode* _NewNode() { AVLTreeNode* pNode=new AVLTreeNode; pNode->m_pLeftSon=nullptr; pNode->m_pRightSon=nullptr; pNode->m_nHeight=1; pNode->m_nValueNumber=0; return pNode; } AVLTreeNode* _NewNode(const _ValyeType& iValue) { AVLTreeNode* pNode=new AVLTreeNode; pNode->m_pLeftSon=nullptr; pNode->m_pRightSon=nullptr; pNode->m_nHeight=1; pNode->m_iValue=iValue; pNode->m_nValueNumber=1; return pNode; } int _Height(AVLTreeNode* pNode) { if(pNode) return pNode->m_nHeight; return 0; } void _PushUp(AVLTreeNode* pNode) { if(!pNode) return; const int nLeftSonHeight=_Height(pNode->m_pLeftSon); const int nRightSonHeight=_Height(pNode->m_pRightSon); if(nLeftSonHeight<nRightSonHeight) pNode->m_nHeight=1+nRightSonHeight; else pNode->m_nHeight=1+nLeftSonHeight; } /** pNode的左孩子将成为根,返回新的树根 **/ AVLTreeNode* _LLRotate(AVLTreeNode* pNode) { if(!pNode) return pNode; AVLTreeNode* pLeftSon=pNode->m_pLeftSon; pNode->m_pLeftSon=pLeftSon->m_pRightSon; pLeftSon->m_pRightSon=pNode; _PushUp(pNode); _PushUp(pLeftSon); return pLeftSon; } /** pNode的右孩子将成为根,返回新的树根 **/ AVLTreeNode* _RRRotate(AVLTreeNode* pNode) { if(!pNode) return pNode; AVLTreeNode* pRightSon=pNode->m_pRightSon; pNode->m_pRightSon=pRightSon->m_pLeftSon; pRightSon->m_pLeftSon=pNode; _PushUp(pNode); _PushUp(pRightSon); return pRightSon; } /** pNode的左孩子的右孩子将成为根,返回新的树根 **/ AVLTreeNode* _LRRotate(AVLTreeNode* pNode) { if(!pNode) return pNode; pNode->m_pLeftSon=_RRRotate(pNode->m_pLeftSon); return _LLRotate(pNode); } /** pNode的右孩子的左孩子将成为根,返回新的树根 **/ AVLTreeNode* _RLRotate(AVLTreeNode* pNode) { if(!pNode) return pNode; pNode->m_pRightSon=_LLRotate(pNode->m_pRightSon); return _RRRotate(pNode); } AVLTreeNode* _Rotate(AVLTreeNode* pNode) { if(!pNode) return pNode; if(2==_Height(pNode->m_pLeftSon)-_Height(pNode->m_pRightSon)) { if(_Height(pNode->m_pLeftSon->m_pLeftSon)>=_Height(pNode->m_pLeftSon->m_pRightSon)) { pNode=_LLRotate(pNode); } else pNode=_LRRotate(pNode); } else if(2==_Height(pNode->m_pRightSon)-_Height(pNode->m_pLeftSon)) { if(_Height(pNode->m_pRightSon->m_pLeftSon)>=_Height(pNode->m_pRightSon->m_pRightSon)) { pNode=_RLRotate(pNode); } else pNode=_RRRotate(pNode); } return pNode; } AVLTreeNode* _Insert(AVLTreeNode* pRoot,const _ValyeType& iInsertValue) { if(nullptr==pRoot) { pRoot=_NewNode(iInsertValue); return pRoot; } else if(m_pCompareFunc(iInsertValue,pRoot->m_iValue)) { pRoot->m_pLeftSon=_Insert(pRoot->m_pLeftSon,iInsertValue); if(2==_Height(pRoot->m_pLeftSon)-_Height(pRoot->m_pRightSon)) { if(m_pCompareFunc(iInsertValue,pRoot->m_pLeftSon->m_iValue)) { pRoot=_LLRotate(pRoot); } else { pRoot=_LRRotate(pRoot); } } } else if(m_pCompareFunc(pRoot->m_iValue,iInsertValue)) { pRoot->m_pRightSon=_Insert(pRoot->m_pRightSon,iInsertValue); if(2==_Height(pRoot->m_pRightSon)-_Height(pRoot->m_pLeftSon)) { if(m_pCompareFunc(iInsertValue,pRoot->m_pRightSon->m_iValue)) { pRoot=_RLRotate(pRoot); } else { pRoot=_RRRotate(pRoot); } } } else { ++pRoot->m_nValueNumber; } _PushUp(pRoot); return pRoot; } AVLTreeNode* _Delete(AVLTreeNode* pRoot,const _ValyeType& iDeleteValue) { if(nullptr==pRoot) return nullptr; if(m_pCompareFunc(iDeleteValue,pRoot->m_iValue)) { pRoot->m_pLeftSon=_Delete(pRoot->m_pLeftSon,iDeleteValue); } else if(m_pCompareFunc(pRoot->m_iValue,iDeleteValue)) { pRoot->m_pRightSon=_Delete(pRoot->m_pRightSon,iDeleteValue); } else { if(0==--pRoot->m_nValueNumber) { if(nullptr==pRoot->m_pLeftSon) { AVLTreeNode* pTmp=pRoot; pRoot=pRoot->m_pRightSon; delete pTmp; } else if(nullptr==pRoot->m_pRightSon) { AVLTreeNode* pTmp=pRoot; pRoot=pRoot->m_pLeftSon; delete pTmp; } else { AVLTreeNode* pTmp=pRoot->m_pRightSon; while(pTmp->m_pLeftSon) pTmp=pTmp->m_pLeftSon; pRoot->m_iValue=pTmp->m_iValue; pRoot->m_pRightSon=_Delete(pRoot->m_pRightSon,pRoot->m_iValue); } } else { return pRoot; } } _PushUp(pRoot); if(pRoot&&pRoot->m_pLeftSon) pRoot->m_pLeftSon=_Rotate(pRoot->m_pLeftSon); if(pRoot&&pRoot->m_pRightSon) pRoot->m_pRightSon=_Rotate(pRoot->m_pRightSon); if(pRoot) pRoot=_Rotate(pRoot); return pRoot; } public: CAVLTree(_FuncType* pCompareFunc):m_pRoot(nullptr),m_pCompareFunc(pCompareFunc) {} void Insert(const _ValyeType& iInsertValue) { m_pRoot=_Insert(m_pRoot,iInsertValue); } void Delete(const _ValyeType& iDeleteValue) { m_pRoot=_Delete(m_pRoot,iDeleteValue); } int Find(const _ValyeType& iSearchValue) { AVLTreeNode* pCurrent=m_pRoot; while(1) { if(!pCurrent) break; if(m_pCompareFunc(iSearchValue,pCurrent->m_iValue)) { pCurrent=pCurrent->m_pLeftSon; } else if(m_pCompareFunc(pCurrent->m_iValue,iSearchValue)) { pCurrent=pCurrent->m_pRightSon; } else return pCurrent->m_nValueNumber; } return 0; } };
标签:struct 大于 最大值 分享 break number alt 状态 val
原文地址:http://www.cnblogs.com/jianglangcaijin/p/5987767.html