标签:out signed nbsp mat cstring ios pre pac sig
题意:有F + 1(1 <= F <= 10000)个人分N(1 <= N <= 10000)个圆形派,每个人得到的派面积相同,且必须是一整块(不能够两个甚至多个派拼在一起),求每个人最多能得到多大面积的派。(误差最多到0.001)
因为答案是小数类型的,并且N高达10000,故不可暴力枚举。
可以二分枚举最大面积,然后检查是否切出来派的总个数大于等于F + 1。
(判相等时不可直接判相等,需要加精度控制)
#include<cstdio> #include<cstring> #include<cctype> #include<cstdlib> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<deque> #include<queue> #include<stack> #include<list> #define fin freopen("in.txt", "r", stdin) #define fout freopen("out.txt", "w", stdout) #define pr(x) cout << #x << " : " << x << " " #define prln(x) cout << #x << " : " << x << endl typedef long long ll; typedef unsigned long long llu; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const ll LL_INF = 0x3f3f3f3f3f3f3f3f; const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f; const double pi = acos(-1.0); const double EPS = 1e-6; const int dx[] = {0, 0, -1, 1}; const int dy[] = {-1, 1, 0, 0}; const ll MOD = 1e9 + 7; const int MAXN = 100 + 10; const int MAXT = 10000 + 10; using namespace std; int T, n, f; double a[MAXT]; bool judge(double area){ int sum = 0; for(int i = 0; i < n; ++i) sum += int(a[i] / area); return sum >= f; } int main(){ scanf("%d", &T); while(T--){ scanf("%d%d", &n, &f); for(int i = 0; i < n; ++i){ scanf("%lf", a + i); a[i] = a[i] * a[i] * pi; } ++f; double l = 0.0, r = *max_element(a, a + n); while(l + EPS < r){ double mid = (l + r) / 2; if(judge(mid)) l = mid; else r = mid; } printf("%.4lf\n", l); } return 0; }
标签:out signed nbsp mat cstring ios pre pac sig
原文地址:http://www.cnblogs.com/tyty-TianTengtt/p/5996061.html