码迷,mamicode.com
首页 > 其他好文 > 详细

深度学习笔记

时间:2016-10-27 12:45:57      阅读:241      评论:0      收藏:0      [点我收藏+]

标签:gen   example   one   tput   out   深度   深度学习   model   this   

Assume the output from a layer in CNN is N × N × d dimension, which is the output of d filters for N × N spatial cells. Each spatial cell is computed from a receptive field in the input image.

The receptive fields of all the spatial cells in the input image can highly overlap with each other. The size of one receptive field can be computed layer by layer in CNN. In a convolution (pooling) layer, if the filter (pooling) size is a×a and the stride is s, then T ×T cells in the output of this layer corresponds to  [s*(T ? 1) + a] × [s*(T ? 1) + a] cells in the input of this layer. For example, one cell in the CONV5 (the 5th convolutional)layer of CNN model (imagenet-vgg-m) [40] corresponds to a 139 × 139 receptive field in the 224 × 224 input image (cf. Fig. 4).

深度学习笔记

标签:gen   example   one   tput   out   深度   深度学习   model   this   

原文地址:http://www.cnblogs.com/linkboy1980/p/6003152.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!