标签:.net alt ade images 个数 无符号 它的 搜索 软件
存储器系统是一个具有不同容量、成本和访问时间的存储设备的层次结构。
CPU寄存器、高速缓存存储器、主存储器、磁盘。
一、随机访问存储器(RAM)
1.RAM分类:
2.非易失性存储器——ROM
(1)分类
(2)闪存FLASH
基于EEPROM,为大量的电子设备提供快速而持久的非易失性存储。
存在于:数码相机、手机、音乐播放器、PDA、笔记本、台式机、服务器计算机系统
(3)固件
存储在ROM设备中的程序通常被称为固件,当一个计算机系统通电以后,他会运行存储在ROM中的固件。
3.RAM断电丢失数据,是易失的;ROM是非易失的,统称为只读存储器
二、磁盘存储
1.磁盘构造
2.磁盘容量——一个磁盘上可以记录的最大位数
(1)影响因素:
(2)现代大容量磁盘——多区记录
将柱面的集合分割成不相交的子集合(记录区),每个区包含一组连续的柱面;
一个区中的每个柱面的每条磁道都有相同数量的扇区,这个扇区的数量由该区中最里面的磁道所能包含的扇区数确定
注意:软盘仍是老式方法,每条磁道的扇区数是常数
(3)计算公式:
磁盘容量=(字节数/扇区)x(平均盘区数/磁道)x(磁道数/表面)x(表面数/盘片)x(盘片数/磁盘)
3.磁盘操作
磁盘以扇区大小的块来读写数据。
访问时间的分类:
(1)寻道时间
——移动传动臂所用的时间。
依赖于读/写头以前的位置和传动臂在盘面上移动的速度。
通常为3-9ms,最大可达20ms。
(2)旋转时间
——驱动器等待目标扇区的第一个位旋转到读/写头下
依赖于盘面位置和旋转速度。
最大旋转延迟=1/RPM X 60secs/1min (s)
平均旋转时间是最大值的一半。
(3)传送时间
依赖于旋转速度和每条磁道的扇区数目
平均传送时间= 1/RPM x 1/(平均扇区数/磁道) x 60s/1min
访问一个磁盘扇区内容的平均时间为平均寻道时间,平均旋转延迟和平均传送时间之和。
根据课本393页的示例可以得出结论:
1.主要时间是寻道时间和旋转延迟。
2.将寻道时间x2是估计磁盘访问时间的简单而合理的方法。
3.逻辑磁盘块
盘面,磁道,扇区,这个三元组唯一的标识了对应的物理扇区。
类比:内存可以看成字节数组、磁盘可以看成块数组。
4.连接到I/O设备(I/O总线)
I/O总线连接了CPU,主存和I/O设备。
5.访问磁盘
DMA:直接存储器访问 ——设备可以自己执行读或者写总线事务,而不需要CPU干涉的过程。
具体过程见课本395页图。
三、固体磁盘
固态硬盘是一种基于闪存的存储技术【区别于旋转磁盘:固态磁盘没有移动的部分。
1.组成
一个SSD包由一个或多个闪存芯片和闪存翻译层组成:
闪存芯片——对应旋转磁盘中机械驱动器
闪存翻译层(硬件/固件设备)——对应磁盘控制器
2.读/写
(1)顺序读写
速度相当,顺序读比顺序写稍微快一点
(2)随机读写
写比读慢一个数量级
原因:底层闪存基本属性决定。
一个闪存由B个块的序列组成,每个块由P页组成。通常页的大小是512~4kb,块是由32~128页组成的,块的大小为16kb~512kb。
数据是以页为单位读写的。
局部性原理:
一个编写良好的计算机程序,常常倾向于引用临近于其他最近引用过的数据项的数据项,或者最近引用过的数据项本身。
分类:
应用:
1.硬件层:
通过引入高速缓存存储器来保存最近被引用的指令和数据项,从而提高对主存的访问速度。
2.操作系统级:
系统使用主存作为虚拟地址空间最近被引用块的高速缓存,用主存来缓存磁盘文件系统中最近被使用的磁盘块
3.应用程序中:
Web浏览器将最近被引用的文档放在本地磁盘上。
一、对程序数据引用的局部性
1.步长为k的引用模式
定义:一个连续变量中,每隔k个元素进行访问,就被称为步长为k的引用模式。
步长为1的引用模式:就是顺序访问一个向量的每个元素,有时也被称为顺序引用模式,它是程序中 空间局部性常见和重要的来源。
一般来说,随着步长增加,空间局部性下降。
2.多维数组(以二维数组为例)
int sumarraycols(int a[M][N])
{
int i,j,sum = 0;
for(i=0;i<N;i++)
for(j=0;j<M;j++)
sum += a[i][j];
return sum;
}
和
int sumarraycols(int a[M][N])
{
int i,j,sum = 0;
for(j=0;j<M;j++)
for(i=0;i<N;i++)
sum += a[i][j];
return sum;
}
上面的代码是按照行优先顺序执行的,下面的代码是按照列优先顺序执行的,而c数组在存储器中是按照行顺序存放的,所以第一个空间局部性良好,第二个空间局部性很差。
因为循环体会被执行多次,所以它也有很好的时间局部性。
二、取指令的局部性
程序指令是存放在存储器中的,CPU必须取出(读出)这些指令。
但是代码区别于程序数据的一个重要属性是:在运行时它是不能被修改的。
三、局部性小结
量化评价一个程序中局部性的简单原则:
每层存储设备都是下一层的“缓存”
一、缓存
高速缓存:是一个小而快速的存储设备,它作为存储在更大、更慢的设备中的数据对象的缓冲区域。
缓存:使用高速缓存的过程称为缓存。
数据总是以块大小为传送单元在第k层与第k+1层之间来回拷贝。任一对相邻的层次之间块大小是固定的,但是其他的层次对之间可以有不同的块大小。
一般来说:层越低,块越大。
1.缓存命中
当程序需要第k+1层的某个数据对象d时,首先在当前存储在第k层的一个块中查找d,如果d刚好缓存在第k层中,就称为缓存命中。
该程序直接从第k层读取d,比从第k+1层中读取d更快。
2.缓存不命中
即第k层中没有缓存数据对象d。
这时第k层缓存会从第k+1层缓存中取出包含d的那个块。如果第k层缓存已满,就可能会覆盖现存的一个块
覆盖——替换/驱逐
替换策略:
3.缓存不命中的种类
(1)强制性不命中/冷不命中
即第k层的缓存是空的(称为冷缓存),对任何数据对象的访问都不会命中。
通常是短暂事件,不会在反复访问存储器使得缓存暖身(理解为反复访问存储器,使得存储器不为空?)之后的稳定状态中出现。
(2)冲突不命中
由于一个放置策略:将第k+1层的某个块限制放置在第k层块的一个小的子集中,这就会导致缓存没有满,但是那个对应的块满了,就会不命中。
(3)容量不命中
当工作集的大小超过缓存的大小时,缓存会经历容量不命中,就是说缓存太小了,不能处理这个工作集。
4.缓存管理
某种形式的逻辑必须管理缓存,而管理缓存的逻辑可以是硬件、软件,或者两者的集合。
L1高速缓存:
位于CPU寄存器文件和主存之间,访问速度2-4个时钟周期
L2高速缓存:
位于L1高速缓存和主存之间,访问速度10个时钟周期
L3高速缓存:
位于L2高速缓存和主存之间,访问速度30或40个时钟周期
一、通用的高速缓存存储器结构
高速缓存是一个高速缓存组的数组,它的结构可以用元组(S,E,B,m)来描述:
除此之外还有标记位和有效位:
高速缓存的结构将m个地址划分成了t个标记位,s个组索引位和b个块偏移位。
1.高速缓存的大小/容量C
指所有块的大小的和,不包括标记位和有效位,所以:
C=SEB
2.工作过程
S,B将m个地址位分为了三个字段,然后:
b个块偏移位给出来在B个字节的数据块中的字偏移
习题6.10:只需记住几个参数之间的数量关系即可
二、直接映射高速缓存
根据E(每个组的高速缓存行数)划分高速缓存为不同的类,E=1的称为直接映射高速缓存,以此为例:
高速缓存确定一个请求是否命中,然后取出被请求的字的过程,分为三步:
1.组选择 2.行匹配 3.字抽取 1.组选择
高速缓存从w的地址中间抽取出s个组索引位
组索引位:一个对应于一个组号的无符号整数。
类比:高速缓存-关于组的一位数组,组索引位就是到这个数组的索引。
2.行匹配
注意,判断缓存命中有两个充分必要条件:
3.字选择
同样的一个类比:块-关于字节的数组,字节偏移是到这个数组的一个索引。
我的理解,还能类比为数组的下标,和有效地址的偏移量,等等。
4.缓存不命中时的行替换
——用新取出的行替换当前的行
5.后运行中的直接映射高速缓存
※注意课本第413-414页的CPU执行读的一系列动作
1.先利用索引位,确定是针对哪个组
2.然后看对应的组是否有效:
(1)如果无效则缓存不命中,高速缓存从存储器或低一层中取出要找的块,存储在对应的组中,再把有效位置1,返回
需要的值
(2)如果有效,再根据标记找是否有匹配的标记:
如果有,则缓存命中,返回需要的值
如果没有,则替换行,然后返回
6.直接映射高速缓存中的冲突不命中
(1)抖动:
——高速缓存反复的加载和驱逐相同的高速缓存块的组
(2)原因:
这些块被映射到了同一个高速缓存组。
(3)解决方法:
在每个数组的结尾放B字节的填充(B字节是一个块的长度,一行是一个块,相当于分开了行)从而使得他们映射到不同的组。
为什么用中间位做索引?参看415页习题6.12和416页旁注。高位的话,任何时刻高速缓存都只保存着一个块大小的数组内容。
三、组相联高速缓存
E路组相联高速缓存:1<E<C/B
1.组选择
和直接的一样。
2.行匹配和字选择
形式是(key, value),用key作为标记和有效位去匹配,匹配上了之后返回value。
重要思想:组中的任意一行都可以包含任何映射到这个组的存储器块,所以告诉缓存必须搜索组中的每一行。
判断匹配的标准依旧是两个充分必要条件:
有空行替换空行,没有空行,应用替换策略:
四、全相联高速缓存(E=C/B)
1.组选择
只有一个组,默认组0,没有索引位,地址只被划分成了一个标记和一个块偏移。
2.行匹配和字选择
同组相联。
只适合做小的高速缓存。
五、写
1.写命中时,更新低一层中的拷贝的方法:
(1)直写,立即将w的高速缓存块协会到紧接着的低一层中
缺点:每次写都会引起总线流量。
(2)写回,只有当替换算法要驱逐更新过的块时,才写到紧接着的低一层中
2.写不命中的处理方法
(1)写分配---通常写回对应
加载相应的低一层中的块到高速缓存中,然后更新这个高速缓存块。
(2)非写分配---通常直写对应
避开高速缓存,直接把这个字写在低一层中。
六、真实的高速缓存层次结构:
高速缓存既保存数据,也保存指令。
七、高速缓存参数的性能影响
1.性能:
2.具体影响:
高速缓存行、组和块有什么区别?
通过总结知识点得出以下结论:
链接:https://git.oschina.net/sjy519/linux-program-C/tree/master
通过这一章的学习我对存储器的模式有了更深入的了解,但是在看教材412的具体例子时,发现很难理解,相关习题也没弄明白,于是上网查找相关知识点的讲解,才慢慢理解直接映射高速缓存,只能说过了一遍知识点并不能完全消化。
代码行数(新增/累积) | 博客量(新增/累积) | 学习时间(新增/累积) | 重要成长 | |
---|---|---|---|---|
目标 | 3000行 | 30篇 | 300小时 | |
第一周 | 0/0 | 1/2 | 25/40 | 学习了Linux基础知识和核心命令 |
第二周 | 0/0 | 0/2 | 0/40 | |
第三周 | 300/300 | 3/5 | 40/80 |
学习了vim、gcc、gdb指令; 学习了信息表示和处理
|
第五周 | 200/500 | 1/6 | 45/125 |
学习了程序的机器级表示 |
第六周 | 150/650 | 1/7 | 40/165 |
学习了处理器体系结构
|
第七周 | 100/750 | 1/8 | 40/205 |
学习了存储器层次结构 |
20145216史婧瑶《信息安全系统设计基础》第7周学习总结
标签:.net alt ade images 个数 无符号 它的 搜索 软件
原文地址:http://www.cnblogs.com/sjy519/p/6013083.html