标签:cst vector 复杂 方法 ack std ret 线性 ase
包括线性筛,朴素判断方法,以及miller-rabin(非加强版)
#include <iostream> #include <cstdlib> #include <vector> #include <map> using namespace std; inline bool sqrt_judge(int x) //复杂度O(sqrt(n)) { if(x == 2) return 1; if(x == 1) return 0; for(int i = 2; i*i <= x; i++) if(x % i == 0) return 0; return 1; } inline int Pow(int x, int P) { int ans = 1; for(int i = 1; i <= P; i++) ans = ans*x%(P+1); return ans; } inline bool Miller_Rabin(int x) //不稳定随机判断,复杂度O(1) { if(x == 2) return 1; if(x == 1) return 0; int p[7] = {2, 3, 5, 7, 11, 13, 17}; for(int i = 0; i < 7 && p[i] != x; i++) if(Pow(x, p[i]-1) != 1) return 0; return 1; } vector <int> prime; map <int, int> check; void Select() //素数筛,筛选复杂度O(n),判断复杂度O(1) { prime.clear(); check.clear(); for(int i = 2; i <= 100000; i++) { if(! check[i]) prime.push_back(i); for(auto x : prime) { if(i * x > 100000) break; check[i * x] = 1; if(i % x == 0) break; } } } int main() { Select(); int n; while(cin>>n) { int ans = 0, i; switch(rand()%3) { case 0: for(i = 1; i < n; i++) if(sqrt_judge(i)) ans += i; break; case 1: for(i = 1; i < n; i++) if(Miller_Rabin(i)) ans += i; break; case 2: for(auto x : prime) if(x < n) ans += x; else break; break; } cout<<ans<<endl; } }
标签:cst vector 复杂 方法 ack std ret 线性 ase
原文地址:http://www.cnblogs.com/Saurus/p/6017219.html