Redis as an LRU cache
Redis as a cache used to work in two main ways: you could either set a time to live to cached entries. If you tune the TTL well enough, and you know how many new objects are created every second, you can avoid Redis using more than a given amount of RAM.
Another way to use Redis as a cache is the maxmemory directive, a feature that allows specifying a maximum amount of memory to use. When new data is added to the server, and the memory limit was already reached, the server will remove some old data deleting a volatile key, that is, a key with an EXPIRE (a timeout) set, even if the key is still far from expiring automatically.
The algorithm used is very simple, three random volatile keys are sampled, the key with the nearest expire time is removed from the dataset. If there are not volatile keys at all the server returns an error, as a write operation was requested, we are already at the memory limit specified by the user, and no volatile keys can be removed to make room for new data.
Redis as an LRU cache
The above solutions are far from being perfect. This are the main problems:- With the first approach of setting a relatively short expire in order to balance the creation and destruction of objects to avoid using too much memory, there is always the risk of using too little or too much memory. Why deleting objects when there is no need to? And why using more memory than needed when the creation rate of objects is over the expected value?
- maxmemory was definitely better, but the purging algorithm of removing the key with the nearest TTL was not optimal with many applications where an LRU algorithm can work better. Most of the time you end setting the same TTL to all the keys, turing the algorithm into actually random eviction. Fortunately random eviction is not that bad (and with some access pattern it is actually better than LRU) but there was definitely room to improve things.
- With both the solutions, setting an expire in every key is needed, and this costs memory in Redis. If we want to use Redis as an LRU cache, and in general as a cache, every data inside the instance is a good candidate for eviction, regardless of an expire set.
What‘s new
So the new version of maxmemory is actually composed of three different configuration directives:maxmemory bytes
This works as usually, specifying the max number of bytes to use. You can specify this as kbytes, gigabytes and so forth as usually, like maxmemory 2g.
maxmemory-policy policy
This new configuration option is used to specify the algorithm (policy) to use when we need to reclaim memory. There are five different algorithms now:
- volatile-lru remove a key among the ones with an expire set, trying to remove keys not recently used.
- volatile-ttl remove a key among the ones with an expire set, trying to remove keys with short remaining time to live.
- volatile-random remove a random key among the ones with an expire set.
- allkeys-lru like volatile-lru, but will remove every kind of key, both normal keys or keys with an expire set.
- allkeys-random like volatile-random, but will remove every kind of keys, both normal keys and keys with an expire set.
maxmemory-samples number_of_samples
The last config option is used to tune the algorithms precision. In order to save memory Redis just adds a 22 bits field to every object for LRU. When we need to remove a key we sample N keys, and remove the one that was idle for longer time. For default three keys are sampled, that is a reasonable approximation of LRU in the long run, but you can get more precision at the cost of some more CPU time changing the number of keys to sample.
Currently I‘m still testing this code carefully, but for sure even if it‘s little code, it‘s a major step forward in making Redis a valuable caching solution.
Important note: all the new features are compatible with the CONFIG command, so you can set and get this parameters at run time using CONFIG SET and CONFIG GET.
Appendix: how to remember the Redis port number
Today on Twitter I saw a tweet related to the ability to remember the Redis port number. There is a trick, the Redis port number, 6379, is MERZ at the phone keyboard.
Is it a coincidence that it sounds not random enough? Actually not ;) I selected 6379 because of MERZ, and not the other way around.
Everything started with Alessia Merz, an Italian Showgirl (make sure to check some (not safe for work) photo as well).
I and my friends are used to create our own slang, that is evolving since... 20 or 25 years. Well one adjective that we use consistently since 10 years is "merz", but the meaning of the word changed so much in the course of the time.
Initially it started because we were really delighted by the stupidity of the sentences that the showgirl was able to state in the italian TV. So we started using "MERZ" when something was... stupid. "Hey, that‘s merz!". And so forth. But then with some time the meaning shifted in something stupid as pointless, but with very technical value, or with an impressive amount of skills and patience and work involved, but still... stupid.
For instance creating a 3D map of your hometown by sampling the points with a GPS and a broken car going around for the whole night, or analyzing tons of lottery data searching for biases, perfectly knowing that we‘ll never spend a single penny in a lottery ticket anyway, and so forth. "Merz" basically means... hack value, but is also referred to people not just things, people that act in a funny way just for hack value, or to be fun, and so forth.
So when I had to pick a port number for Redis I had no troubles, whatever number MERZ was at the phone, it was the Redis port number.