标签:bsp orm with after osi 作业 sum 空间 分析
import cmath from math import * sgn = lambda x: 1 if x > 0 else -1 # 坑爹的赋值问题!注意下标从1开始 def init(): A = [[0 for i in range(10)] for i in range(10)] for i in range(10): for j in range(10): ii, jj = i + 1, j + 1 A[i][j] = sin(0.5 * ii + 0.2 * jj) if ii != jj else 1.52 * cos(ii + 1.2 * jj) return A # 矩阵转置 def transposition(A): ans = [[0 for i in range(len(A))] for j in range(len(A[0]))] for i in range(len(A)): for j in range(len(A[i])): ans[j][i] = A[i][j] return ans # 矩阵与矩阵相乘 def matrix_mul_matrix(A, B): assert len(A[0]) == len(B) ans = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(ans)): for j in range(len(ans[i])): ans[i][j] = sum([A[i][k] * B[k][j] for k in range(len(B))]) return ans # 矩阵与向量相乘 def matrix_mul_vector(A, b): assert len(A[0]) == len(b) return [sum([A[i][j] * b[j] for j in range(len(b))]) for i in range(len(A))] # 向量与向量相乘 def vector_mul_vector(A, B): assert len(A) == len(B) return sum([A[i] * B[i] for i in range(len(A))]) # 向量除以常数k def div(v, k): return [v[i] / k for i in range(len(v))] # 矩阵的拟上三角化 def quasi_upper_triangular(A): for i in range(0, len(A) - 2): # i表示列数 if not any([A[j][i] for j in range(i + 2, len(A))]): continue d = sqrt(sum([A[j][i] ** 2 for j in range(i + 1, len(A))])) c = -sgn(A[i + 1][i]) * d h = c * (c - A[i + 1][i]) u = [0] * (i + 1) + [A[i + 1][i] - c] + [A[j][i] for j in range(i + 2, len(A))] p = div(matrix_mul_vector(transposition(A), u), h) q = div(matrix_mul_vector(A, u), h) t = vector_mul_vector(p, u) / h w = [q[i] - t * u[i] for i in range(len(q))] for i in range(len(A)): for j in range(len(A[i])): A[i][j] = A[i][j] - w[i] * u[j] - u[i] * p[j] # 打印矩阵 def printMatrix(A,s): print(s) for i in range(len(A)): for j in range(len(A[i])): print(‘%.3f‘ % A[i][j], ‘ ‘, end=‘,‘) print() print("=========") def qr(B, C): for i in range(len(B) - 1): if not any([B[j][i] for j in range(i + 1, len(B))]): continue d = sqrt(sum([B[j][i] ** 2 for j in range(i, len(B))])) c = -sgn(B[i][i]) * d h = c * (c - B[i][i]) u = [0] * (i) + [B[i][i] - c] + [B[j][i] for j in range(i + 1, len(B))] v = div(matrix_mul_vector(transposition(B), u), h) for i in range(len(B)): for j in range(len(B[i])): B[i][j] -= u[i] * v[j] p = div(matrix_mul_vector(transposition(C), u), h) q = div(matrix_mul_vector(C, u), h) t = vector_mul_vector(p, u) / h w = [q[i] - t * u[i] for i in range(len(q))] for i in range(len(C)): for j in range(len(C[i])): C[i][j] = C[i][j] - w[i] * u[j] - u[i] * p[j] # 带双步位移的QR分解求特征根 def qr_with_double_shift(A): root = [0] * len(A) i = len(A) - 1 k = 0 # 步数 while i >= 0: if i == 0: root[0] = A[0][0] break elif abs(A[i][i - 1]) < epsilon: root[i] = A[i][i] i -= 1 continue d1, d2, d3, d4 = A[i - 1][i - 1], A[i - 1][i], A[i][i - 1], A[i][i] delta = cmath.sqrt((d1 + d4) ** 2 - 4 * (d1 * d4 - d2 * d3)) if i == 1 or abs(A[i - 1][i - 2]) < epsilon: (root[i], root[i - 1]) = (((d1 + d4) + delta) / 2, ((d1 + d4) - delta) / 2) i -= 2 continue if k == L: print("didn‘t get all of the root after {} steps".format(L)) break s, t = d1 + d4, d1 * d4 - d2 * d3 M = matrix_mul_matrix(A, A) for i in range(len(M)): for j in range(len(M[0])): M[i][j] -= s * A[i][j] M[i][i] += t qr(M, A) k += 1 return root """ 高斯消去法适用范围:各阶主子式大于0 列主元高斯消去法适用范围:行列式值大于0 全主元高斯消去法适用范围:求解任意方程,可以求出一个解空间来 在本问题中,根据特征值求特征向量有两种方法: 1.零点平移反幂法迭代求最接近lamda的特征值,也能求出特征向量,但它只能求出一个特征向量 2.全主元高斯消去法,这种方法最完善 """ # 全主元高斯消去法求方阵A关于特征根root的特征向量 def solve(A, root): n = len(A) for i in range(n): A[i][i] -= root ind = [i for i in range(n)] rank = n for i in range(n): x, y = i, i for row in range(i, n): for col in range(i, n): if abs(A[x][y]) < abs(A[row][col]): x, y = row, col if abs(A[x][y]) < epsilon: # 最大值也为0,开始回代 rank = i break # 将最大行与当前行进行交换 A[x], A[i] = A[i], A[x] # 换列,第y列和第i列 for row in range(n): A[row][y], A[row][i] = A[row][i], A[row][y] ind[i], ind[y] = ind[y], ind[i] # 单位化一行 t=A[i][i] for j in range(i, n): A[i][j] /= t for row in range(i + 1, n): # 第j行-A[j][i]倍的第i行 t = A[row][i] if t==0:continue for col in range(i,n): A[row][col]-=t*A[i][col] # 回代过程 for row in range(rank - 1, -1, -1): for j in range(row + 1, n): # 第i行-A[i][j]倍的第j行 # 这里一定要注意必须用t把A[i][j]存起来,否则A[i][j]就变成0了 t = A[row][j] for k in range(j, n): A[row][k] -= t * A[j][k] # 构造特征向量空间,一定要注意把各个列给换回去! ans = [[0] * len(A) for i in range(n - rank)] for i in range(rank, n): for j in range(n): ans[i - rank][ind[j]] = -A[j][i] ans[i - rank][ind[i]] = 1 return ans epsilon = 1e-12 L = 0xffffff A = init() printMatrix(A,‘最初的矩阵‘) quasi_upper_triangular(A) printMatrix(A,‘拟对角化之后的矩阵‘) roots = qr_with_double_shift(A) print(‘各个特征根‘,roots) printMatrix(A,‘qr双步位移法结束之后的矩阵‘) for i in roots: if type(i) == float: A = init() x = solve(A, i) print(‘特征根‘, i, ‘对应的特征向量为\n‘, x)
标签:bsp orm with after osi 作业 sum 空间 分析
原文地址:http://www.cnblogs.com/weidiao/p/6024616.html