标签:计算 let cape actual comm 友好 angular out 3.0
利用turtlebot 的导航配置文件
由于movbase发的速度太不友好了所以使用了ros自带的滤波安装相应的包
apt-get install ros-indigo-yocs-velocity-smoother
我的配置文件 standalone.yaml
# Example configuration: # - velocity limits are around a 10% above the physical limits # - acceleration limits are just low enough to avoid jerking # Mandatory parameters speed_lim_v: 0.8 speed_lim_w: 5.4 accel_lim_v: 0.3 accel_lim_w: 3.5 # Optional parameters frequency: 20.0 decel_factor: 1.0 # Robot velocity feedback type: # 0 - none # 1 - odometry # 2 - end robot commands robot_feedback: 2
我机器人的启动文件
<launch> <param name="use_sim_time" value="false" /> <node name="link_laser" pkg="tf" type="static_transform_publisher" args="0.15 0 0.15 0 0 0 base_link laser 50"/> <node name="link_footprint" pkg="tf" type="static_transform_publisher" args="0 0 0 0 0 0 base_link base_footprint 50"/> <node pkg="odom_tf_package" type="base_controller" name="serial_send_recevice" output="screen"/> <include file="$(find odom_tf_package)/launch/include/rplidar.launch" /> <arg name="node_name" value="velocity_smoother"/> <arg name="nodelet_manager_name" value="nodelet_manager"/> <arg name="config_file" value="$(find odom_tf_package)/config/standalone.yaml"/> <arg name="raw_cmd_vel_topic" value="cmd_vel"/> <arg name="smooth_cmd_vel_topic" value="smoother_cmd_vel"/> <arg name="robot_cmd_vel_topic" value="robot_cmd_vel"/> <arg name="odom_topic" value="odom"/> <!-- nodelet manager --> <node pkg="nodelet" type="nodelet" name="$(arg nodelet_manager_name)" args="manager"/> <!-- velocity smoother --> <include file="$(find yocs_velocity_smoother)/launch/velocity_smoother.launch"> <arg name="node_name" value="$(arg node_name)"/> <arg name="nodelet_manager_name" value="$(arg nodelet_manager_name)"/> <arg name="config_file" value="$(arg config_file)"/> <arg name="raw_cmd_vel_topic" value="$(arg raw_cmd_vel_topic)"/> <arg name="smooth_cmd_vel_topic" value="$(arg smooth_cmd_vel_topic)"/> <arg name="robot_cmd_vel_topic" value="$(arg robot_cmd_vel_topic)"/> <arg name="odom_topic" value="$(arg odom_topic)"/> </include> </launch>
建图的启动文件:gmapping.launch
<launch> <arg name="scan_topic" default="scan" /> //laser的topic名称,与自己的激光的topic相对应 <param name="odom_frame" value="odom"/> //世界坐标 <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen" clear_params="true"> //启动slam的节点 <param name="map_update_interval" value="2.0"/> <!-- Set maxUrange < actual maximum range of the Laser --> <param name="maxRange" value="5.0"/> <param name="maxUrange" value="4.5"/> <param name="sigma" value="0.05"/> <param name="kernelSize" value="1"/> <param name="lstep" value="0.05"/> //optimize机器人移动的初始值(距离) <param name="astep" value="0.05"/> //optimize机器人移动的初始值(角度) <param name="iterations" value="5"/> //icp的迭代次数 <param name="lsigma" value="0.075"/> <param name="ogain" value="3.0"/> <param name="lskip" value="0"/> //为0,表示所有的激光都处理,尽可能为零,如果计算压力过大,可以改成1 <param name="srr" value="0.01"/> //以下四个参数是运动模型的噪声参数 <param name="srt" value="0.02"/> <param name="str" value="0.01"/> <param name="stt" value="0.02"/> <param name="linearUpdate" value="0.5"/> //机器人移动linearUpdate距离,进行scanmatch <param name="angularUpdate" value="0.5"/> //机器人选装angularUpdate角度,进行scanmatch <param name="temporalUpdate" value="-1.0"/> <param name="resampleThreshold" value="0.5"/> <param name="particles" value="80"/> //很重要,粒子个数 <!-- <param name="xmin" value="-50.0"/> <param name="ymin" value="-50.0"/> <param name="xmax" value="50.0"/> <param name="ymax" value="50.0"/> make the starting size small for the benefit of the Android client‘s memory... --> <param name="xmin" value="-1.0"/> //map初始化的大小 <param name="ymin" value="-1.0"/> <param name="xmax" value="1.0"/> <param name="ymax" value="1.0"/> <param name="delta" value="0.05"/> <param name="llsamplerange" value="0.01"/> <param name="llsamplestep" value="0.01"/> <param name="lasamplerange" value="0.005"/> <param name="lasamplestep" value="0.005"/> <remap from="scan" to="$(arg scan_topic)"/> </node> </launch>
导航启动文件:tb_demo_amcl.launch
<launch>
<param name="use_sim_time" value="false" />
<!-- EDIT THIS LINE TO REFLECT THE NAME OF YOUR OWN MAP FILE
Can also be overridden on the command line -->
<arg name="map" default="map.yaml" />
<!-- Run the map server with the desired map -->
<node name="map_server" pkg="map_server" type="map_server" args="$(find navigation_tutorials)/maps/$(arg map)"/>
<!-- Start move_base -->
<include file="$(find navigation_tutorials)/launch/tb_move_base.launch" />
<!-- Fire up AMCL -->
<include file="$(find navigation_tutorials)/launch/tb_amcl.launch" />
</launch>
tb_move_base.launch
<launch> <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true"> <rosparam file="$(find rbx1_nav)/config/turtlebot/costmap_common_params.yaml" command="load" ns="global_costmap" /> <rosparam file="$(find rbx1_nav)/config/turtlebot/costmap_common_params.yaml" command="load" ns="local_costmap" /> <rosparam file="$(find rbx1_nav)/config/turtlebot/local_costmap_params.yaml" command="load" /> <rosparam file="$(find rbx1_nav)/config/turtlebot/global_costmap_params.yaml" command="load" /> <rosparam file="$(find rbx1_nav)/config/turtlebot/base_local_planner_params.yaml" command="load" /> </node> </launch>
tb_amcl.launch
<launch> <arg name="use_map_topic" default="false"/> <arg name="scan_topic" default="scan"/> <node pkg="amcl" type="amcl" name="amcl" clear_params="true"> <param name="use_map_topic" value="$(arg use_map_topic)"/> <!-- Publish scans from best pose at a max of 10 Hz --> <param name="odom_model_type" value="diff"/> <param name="odom_alpha5" value="0.1"/> <param name="gui_publish_rate" value="10.0"/> <param name="laser_max_beams" value="60"/> <param name="laser_max_range" value="12.0"/> <param name="min_particles" value="500"/> <param name="max_particles" value="2000"/> <param name="kld_err" value="0.05"/> <param name="kld_z" value="0.99"/> <param name="odom_alpha1" value="0.2"/> <param name="odom_alpha2" value="0.2"/> <!-- translation std dev, m --> <param name="odom_alpha3" value="0.2"/> <param name="odom_alpha4" value="0.2"/> <param name="laser_z_hit" value="0.5"/> <param name="laser_z_short" value="0.05"/> <param name="laser_z_max" value="0.05"/> <param name="laser_z_rand" value="0.5"/> <param name="laser_sigma_hit" value="0.2"/> <param name="laser_lambda_short" value="0.1"/> <param name="laser_model_type" value="likelihood_field"/> <!-- <param name="laser_model_type" value="beam"/> --> <param name="laser_likelihood_max_dist" value="2.0"/> <param name="update_min_d" value="0.25"/> <param name="update_min_a" value="0.2"/> <param name="odom_frame_id" value="odom"/> <param name="resample_interval" value="1"/> <!-- Increase tolerance because the computer can get quite busy --> <param name="transform_tolerance" value="1.0"/> <param name="recovery_alpha_slow" value="0.0"/> <param name="recovery_alpha_fast" value="0.0"/> <remap from="scan" to="$(arg scan_topic)"/> </node> </launch>
base_local_planner_params.yaml
controller_frequency: 3.0 recovery_behavior_enabled: false clearing_rotation_allowed: false TrajectoryPlannerROS: max_vel_x: 0.3 min_vel_x: 0.05 max_vel_y: 0.0 # zero for a differential drive robot min_vel_y: 0.0 min_in_place_vel_theta: 0.5 escape_vel: -0.1 acc_lim_x: 2.5 acc_lim_y: 0.0 # zero for a differential drive robot acc_lim_theta: 3.2 holonomic_robot: false yaw_goal_tolerance: 0.1 # about 6 degrees xy_goal_tolerance: 0.15 # 10 cm latch_xy_goal_tolerance: false pdist_scale: 0.8 gdist_scale: 0.6 meter_scoring: true heading_lookahead: 0.325 heading_scoring: false heading_scoring_timestep: 0.8 occdist_scale: 0.1 oscillation_reset_dist: 0.05 publish_cost_grid_pc: false prune_plan: true sim_time: 1.0 sim_granularity: 0.025 angular_sim_granularity: 0.025 vx_samples: 8 vy_samples: 0 # zero for a differential drive robot vtheta_samples: 20 dwa: true simple_attractor: false
costmap_common_params.yaml
obstacle_range: 2.5 raytrace_range: 3.0 robot_radius: 0.165 inflation_radius: 0.3 max_obstacle_height: 0.6 min_obstacle_height: 0.0 observation_sources: scan scan: {data_type: LaserScan, topic: /scan, marking: true, clearing: true, expected_update_rate: 0}
global_costmap_params.yaml
global_costmap: global_frame: /map robot_base_frame: /base_footprint update_frequency: 1.0 publish_frequency: 0 static_map: true rolling_window: false resolution: 0.01 transform_tolerance: 1.0 map_type: costmap
local_costmap_params.yaml
local_costmap: global_frame: /odom robot_base_frame: /base_footprint update_frequency: 5.0 publish_frequency: 1.0 static_map: false rolling_window: true width: 6.0 height: 6.0 resolution: 0.01 transform_tolerance: 1.0 map_type: costmap
把原先建好的图map.pgm map.yaml 放在功能包/maps/下
roslaunch odom_tf_package start.launch 机器人启动文件 roscat navigation_tutorials tb_demo_amcl.launch 导航文件 roslaunch navigation_tutorials rviz.launc rviz启动文件
标签:计算 let cape actual comm 友好 angular out 3.0
原文地址:http://www.cnblogs.com/CZM-/p/6036445.html