码迷,mamicode.com
首页 > 其他好文 > 详细

关于时间复杂度

时间:2016-11-13 21:56:07      阅读:280      评论:0      收藏:0      [点我收藏+]

标签:text   ;;   比较   while   pre   二分检索   style   情况   family   

对于时间复杂度,我一直搞不清楚是什么回事,或者说处于最简单的计算方式上:

常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。

其中,
1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
2.O(2^n),指数阶时间复杂度,该种不实用
3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:
  for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  }
  则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
  则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
  则该算法的 时间复杂度:T(n) = O(n^3)

定义:
如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。


几种时间复杂度的举例:
O(1)
Temp=i;i=j;j=temp;  
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2) 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

    for (i=1;i<n;i++)
    {
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }         
解: 语句1的频度是n-1
 语句2的频度是(n-1)*(2n+1)=2n^2-n-1
  f(n)=2n^2-n-1+(n-1)=2n^2-2
  该程序的时间复杂度T(n)=O(n^2).         

O(n)                                                          
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    {  
       s=a+b;    ③
       b=a;     ④  
       a=s;     ⑤
    }
解:语句1的频度:2,        
       语句2的频度: n,        
      语句3的频度: n-1,        
       语句4的频度:n-1,    
       语句5的频度:n-1,                                  
  T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
O(log2n )
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1,  
        设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
        取最大值f(n)= log2n,
        T(n)=O(log2n )

O(n^3)
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6
所以时间复杂度为O(n^3).

下面是一些常用的记法:
访问数组中的元素是常数时间操作,或说O(1)操作。
一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。
用strcmp比较两个具有n个字符的串需要O(n)时间。
常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

关于时间复杂度

标签:text   ;;   比较   while   pre   二分检索   style   情况   family   

原文地址:http://www.cnblogs.com/mierkelin/p/6059788.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!