码迷,mamicode.com
首页 > 其他好文 > 详细

时间轮

时间:2016-11-15 00:14:25      阅读:400      评论:0      收藏:0      [点我收藏+]

标签:llb   ast   逻辑   实现   tree   com   call   范围   位操作   

老早之前就听说时间轮算法特别高效,Linux内核都用的它,这两天抽空实现了遍……嗯,被差一bug搞死(~ ̄▽ ̄~) 啊哈

技术分享

网上扣来的图,原理好懂:轮子里的每格代表一小段时间(精度),连起来就能表示时间点了(我去年买了个表),格子内含链表,中存回调函数;时间指针每次转动一格,指向某格时,取出链表里的回调函数依次执行,后清空链表,等待下一次转动。

加入节点逻辑也简单:在轮子可表示的时间范围内(格子数*格子精度),配合当前时针位置,对格子总数取余,即得本节点需放哪个格子。

进一步为扩大时间轮的表示范围,使用分级方式,跟时分秒一样,上一级转一圈,下一级动一格。

 

对吧,很容易理解……然后coding是另一码事(╯‵□′)╯︵┴─┴

首先,最重要的,数据结构:用了环形链表,方便增删。

struct NodeLink {
    NodeLink* prev;
    NodeLink* next;
    NodeLink() { prev = next = this; } //circle
};
struct stWheel {
    NodeLink* slots; //每个slot维护的node链表为一个环,slot->next为node链表中第一个节点,prev为node的最后一个节点
    const uint32 size;
    uint32 slotIdx;
    stWheel(uint32 n) : size(n), slotIdx(0){ slots = new NodeLink[size]; }
    ~stWheel() {
        if (slots) {
            for (uint32 j = 0; j < size; ++j) {
                NodeLink* link = (slots + j)->next;
                while (link != slots + j) {
                    TimerNode* node = (TimerNode*)link;
                    link = node->link.next;
                    delete node;
                }
            }
            delete[]slots;
        }
    }
};

具体时间节点的数据结构如下:

struct TimerNode {
    Pool_Obj_Define(TimerNode, 32) //内存池声明,不含数据
    NodeLink link; //must in the head
    uint32 timeDead;
    uint32 interval; //间隔多久
    int loop;        //总共循环多久
    std::function<void()> func;
};

TimeNode里保存上下关系,stWheel的NodeLink辅助用的,环状链表的头,没实际数据,用以记录首尾TimeNode。

核心代码如下:

——增删节点——

void CTimerMgr::_AddTimerNode(uint32 milseconds, TimerNode* node) {
    NodeLink* slot = NULL;
    uint32 tickCnt = milseconds / TIME_TICK_LEN;

    if (tickCnt < WHEEL_CAP[0]) {
        uint32 index = (_wheels[0]->slotIdx + tickCnt) & (WHEEL_SIZE[0] - 1); //2的N次幂位操作取余
        slot = _wheels[0]->slots + index;
    } else {
        for (int i = 1; i < WHEEL_NUM; ++i) {
            if (tickCnt < WHEEL_CAP[i]) {
                uint32 preCap = WHEEL_CAP[i - 1]; //上一级总容量即为本级的一格容量
                uint32 index = (_wheels[i]->slotIdx + tickCnt / preCap - 1) & (WHEEL_SIZE[i] - 1); //勿忘-1
                slot = _wheels[i]->slots + index;
                break;
            }
        }
    }
    NodeLink* link = &(node->link);
    link->prev = slot->prev; //插入格子的prev位置(尾节点)
    link->prev->next = link;
    link->next = slot;
    slot->prev = link;
}
void CTimerMgr::RemoveTimer(TimerNode* node) {
    LOG_TRACK("node[%p], timeDead[%lld]", node, node->timeDead);
    NodeLink* link = &(node->link);
    if (link->prev) {
        link->prev->next = link->next;
    }
    if (link->next) {
        link->next->prev = link->prev;
    }
    link->prev = link->next = NULL;

    delete node;
}

——轮子启动——

void CTimerMgr::CheckTimerList(const uint32 timenow) {
    uint32 tickCnt = timenow > _checkTime ? (timenow - _checkTime) / TIME_TICK_LEN : 0;
    //if (tickCnt) Printf();
    for (uint32 i = 0; i < tickCnt; ++i) { //扫过的slot均超时
        stWheel* wheel = _wheels[0];
        NodeLink* slot = wheel->slots + wheel->slotIdx;
        NodeLink* link = slot->next;
        slot->next = slot->prev = slot; //清空当前格子
        while (link != slot) {            //环形链表遍历
            TimerNode* node = (TimerNode*)link;
            link = node->link.next; //得放在前面,后续函数调用,可能会更改node的链接关系
            AddToReadyNode(node);
        }
        if (++(wheel->slotIdx) >= wheel->size) {
            wheel->slotIdx = 0;
            Cascade(1, timenow); //跳级
        }
        _checkTime += TIME_TICK_LEN;
    }
    DoTimeOutCallBack();
}
uint32 CTimerMgr::Cascade(uint32 wheelIdx, const uint32 timenow) {
    if (wheelIdx < 1 || wheelIdx >= WHEEL_NUM) {
        return 0;
    }
    int casCnt = 0;
    stWheel* wheel = _wheels[wheelIdx];
    NodeLink* slot = wheel->slots + wheel->slotIdx;
    NodeLink* link = slot->next;
    slot->next = slot->prev = slot; //清空当前格子
    while (link != slot) {
        TimerNode* node = (TimerNode*)link;
        link = node->link.next;
        if (node->timeDead <= timenow) {
            AddToReadyNode(node);
        } else {
            _AddTimerNode(node->timeDead - timenow, node); //本级精度下已超时,精度提升,重新加一遍
            ++casCnt;
            LOG_TRACK("wheelIdx[%u], link[%p], milseconds[%u]", wheelIdx, link, node->timeDead - timenow);
        }
    }
    if (++(wheel->slotIdx) >= wheel->size) {
        wheel->slotIdx = 0;
        casCnt += Cascade(++wheelIdx, timenow);
    }
    return casCnt;
}

 

那么问题来了:大于,大于等于,边界,减一……搞错几多次 ○(* ̄︶ ̄*)○ 吃饱睡好

 

 

源码地址:https://github.com/3workman/Tools/tree/master/src/Timer

时间轮

标签:llb   ast   逻辑   实现   tree   com   call   范围   位操作   

原文地址:http://www.cnblogs.com/3workman/p/6063819.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!