码迷,mamicode.com
首页 > 其他好文 > 详细

pandas小记:pandas数据输入输出

时间:2016-11-18 00:31:33      阅读:773      评论:0      收藏:0      [点我收藏+]

标签:key   store   foo   intern   oca   basic   min   表示   ict   

http://blog.csdn.net/pipisorry/article/details/52208727

数据输入输出

数据pickling

pandas数据pickling比保存和读取csv文件要快2-3倍(lz测试不准,差不多这么多)。

ltu_df.to_pickle(os.path.join(CWD, ‘middlewares/ltu_df‘))
ltu_df = pd.read_pickle(os.path.join(CWD, ‘middlewares/ltu_df‘))

[read_pickle]

不过lz测试了一下,还是直接pickle比较快,比pd.read_pickle快2倍左右。

pickle.dump(ltu_df, open(os.path.join(CWD, ‘middlewares/ltu_df.pkl‘), ‘wb‘))
ltu_df = pickle.load(open(os.path.join(CWD, ‘middlewares/ltu_df.pkl‘), ‘rb‘))

CSV

通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。

如:# Reading data locally

df =pd.read_csv(‘/Users/al-ahmadgaidasaad/Documents/d.csv‘)
 
# Reading data from web
data_url="https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df =pd.read_csv(data_url)

Writing to a csv file

In [136]: df.to_csv(‘foo.csv‘)

read_csv

lines = pd.read_csv(checkin_filename, sep=‘\t‘, header=None,names=col_names, parse_dates=[1], skip_blank_lines=True, index_col=0).reset_index()

dateparse = lambda dates: pd.datetime.strptime(dates, ‘%Y-%m‘)
data = pd.read_csv(‘AirPassengers.csv‘, parse_dates=‘Month‘, index_col=‘Month‘,date_parser=dateparse)
参数:

skiprows=2,表示前面两行[0, 1]都不读入,等价于skiprows=[0, 1];

header=None第0行不作为列名;

names=[‘‘] 指定列名;

parse_dates=[]  解析指定行为date类型;

index_col=0   指定某列为行索引,否则自动索引0, 1, .....。reset_index()是其反操作。

parse_dates:这是指定含有时间数据信息的列。正如上面所说的,列的名称为“月份”。
index_col:使用pandas 的时间序列数据背后的关键思想是:目录成为描述时间数据信息的变量。所以该参数告诉pandas使用“月份”的列作为索引。
date_parser:指定将输入的字符串转换为可变的时间数据。Pandas默认的数据读取格式是‘YYYY-MM-DD HH:MM:SS’。如需要读取的数据没有默认的格式,就要人工定义。这和dataparse的功能部分相似,这里的定义可以为这一目的服务。[python模块 - 时间模块 ]

converters : dict, default None: Dict of functions for converting values in certain columns. Keys can eitherbe integers or column labels.将数据某列按特定函数转化,必然可以取代自定义时date_parser和parse_dates两个参数呀。

如解析时间时想返回时间戳的浮点数表示时:

def dateParse(s): return float(__import__(‘datetime‘).datetime.timestamp(__import__(‘dateutil.parser‘).parser.parse(s)))
df = pd.read_csv(os.path.join(CA_DATASET_DIR, checkin_ca), header=0, sep=\t, converters={‘Time(GMT)‘: dateParse})

[Reading from a csv file]

In [137]: pd.read_csv(‘foo.csv‘)
Out[137]: 
     Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
..          ...        ...        ...       ...        ...
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 5 columns]

HDF5

Reading and writing to HDFStores

Writing to a HDF5 Store

In [138]: df.to_hdf(‘foo.h5‘,‘df‘)

Reading from a HDF5 Store

In [139]: pd.read_hdf(‘foo.h5‘,‘df‘)
Out[139]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
...               ...        ...       ...        ...
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

Excel

好像如果使用pd.read_excel要安装xlrd:pip install xlrd

Reading and writing to MS Excel

Writing to an excel file

In [140]: df.to_excel(‘foo.xlsx‘, sheet_name=‘Sheet1‘)

Reading from an excel file

pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, engine=None, squeeze=False, **kwds)

参数:converters:读数据的时候使用converters指定列数据的数值类型 pd.read_excel(‘a.xlsx‘,converters={0: str})

In [141]: pd.read_excel(‘foo.xlsx‘, ‘Sheet1‘, index_col=None, na_values=[‘NA‘])
Out[141]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
...               ...        ...       ...        ...
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

Gotchas

If you are trying an operation and you see an exception like:

>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
    ...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

See Comparisons for an explanation and what to do.

See Gotchas as well.

[CSV & Text files]

from: http://blog.csdn.net/pipisorry/article/details/52208727

ref:  [IO Tools (Text, CSV, HDF5, ...)?]


pandas小记:pandas数据输入输出

标签:key   store   foo   intern   oca   basic   min   表示   ict   

原文地址:http://blog.csdn.net/pipisorry/article/details/52208727

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!