标签:计算几何
题目大意:有一面镜子,一束光射进来,已知镜子的坐标(x1, y1)(x2, y2)两点确定一个镜子的面,光的入射点和光的反射点,求光照在镜子上面点的坐标。
思路:如下图
(1)求直线(x1, y1)(x2, y2)
(2)求(s.x, s.y)关于直线(x1, y1)(x2, y2)的对称点(tmp.x, tmp.y)
(3)求直线(tmp.x, tmp.y)(e.x, e.y)
(4)求(x1, y1)(x2, y2)与(tmp.x, tmp.y)(e.x, e.y)的交点(x, y)
公式:
·已知直线上的两点(x1, y1)(x2, y2),求直线ax+by+c=0
a = y2-y1; b = x1-x2; c = y1*x2-x1*y2;
·已知(x0, y0),求关于直线ax+by+c=0的对称点(x, y)
k = -2 * (a*x0+b*y0+c)/(a*a+b*b);
x = x0 + k*a;
y = y0 + k*b;
·已知直线与直线,求交点(x, y)
如果b1==0则
否则
AC代码
#include <iostream> #include <cstdio> using namespace std; struct Node { double x, y; }; double a1,b1,c1,a2,b2,c2, k; Node n1,n2,s, e, node1; int main() { int n; cin>>n; while (n--) { scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &n1.x, &n1.y,&n2.x, &n2.y,&s.x, &s.y,&e.x, &e.y); { //求镜子所在直线 a1 = n2.y-n1.y;b1 = n1.x-n2.x;c1=n1.y*n2.x-n1.x*n2.y; //求对称点 k = -2*(a1*s.x+b1*s.y+c1)/(a1*a1+b1*b1); node1.x = s.x + k*a1; node1.y = s.y + k*b1; a2 =e.y-node1.y ; b2=node1.x-e.x ; c2 =node1.y*e.x-node1.x*e.y; //求两条直线的交点 double x, y; if (b1==0) { x=-c1/a1; y=(-c2-a2*x)/b2; } else { x = (c2*b1-c1*b2)/(a1*b2-a2*b1); y = (-a1*x-c1)/b1; } printf("%.3lf %.3lf\n", x, y); } } return 0; }
hdu 2857 Mirror and Light,布布扣,bubuko.com
标签:计算几何
原文地址:http://blog.csdn.net/u010499449/article/details/38584971