码迷,mamicode.com
首页 > 其他好文 > 详细

Dot Product

时间:2016-11-22 02:47:48      阅读:346      评论:0      收藏:0      [点我收藏+]

标签:between   more   form   http   head   dir   involved   height   ide   

These are vectors:

技术分享

They can be multiplied using the "Dot Product" (also see Cross Product).

Calculating

You can calculate the Dot Product of two vectors this way:

技术分享

a · b = |a| × |b| × cos(θ)

Where:
|a| is the magnitude (length) of vector a
|b| is the magnitude (length) of vector b
θ is the angle between a and b

So we multiply the length of a times the length of b, then multiply by the cosine of the angle between a and b

OR you can calculate it this way:

技术分享

a · b = ax × bx + ay × by

So we multiply the x‘s, multiply the y‘s, then add.

Both methods work!

Example: Calculate the dot product of vectors a and b:

技术分享

a · b = |a| × |b| × cos(θ)

a · b = 10 × 13 × cos(59.5°)

a · b = 10 × 13 × 0.5075...

a · b = 65.98... = 66 (rounded)

a · b = ax × bx + ay × by

a · b = -6 × 5 + 8 × 12

a · b = -30 + 96

a · b = 66

Both methods came up with the same result (after rounding)

Also note that we used minus 6 for ax (it is heading in the negative x-direction)

Note: you can use the Vector Calculator to help you.

Why cos(θ) ?

OK, to multiply two vectors it makes sense to multiply their lengths together but only when they point in the same direction.

So we make one "point in the same direction" as the other by multiplying by cos(θ):

技术分享

技术分享

We take the component of a
that lies alongside b

Like shining a light to see
where the shadow lies

THEN we multiply !

It works exactly the same if we "projected" b alongside a then multiplied:

Because it doesn‘t matter which order we do the multiplication:

|a| × |b| × cos(θ) = |a| × cos(θ) × |b|

技术分享

Right Angles

When two vectors are at right angles to each other the dot product is zero.

Example: calculate the Dot Product for:

技术分享

a · b = |a| × |b| × cos(θ)

a · b = | a| × | b| × cos(90°)

a · b = | a| × | b| × 0

a · b = 0

a · b = ax × bx + ay × by

a · b = -12 × 12 + 16 × 9

a · b = -144 + 144

a · b = 0

This can be a handy way to find out if two vectors are at right angles.

Three or More Dimensions

This all works fine in 3 (or more) dimensions, too.

And can actually be very useful!

Example: Sam has measured the end-points of two poles, and wants to know the angle between them:

技术分享

We have 3 dimensions, so don‘t forget the z-components:

a · b = ax × bx + ay × by + az × bz

a · b = 9 × 4 + 2 × 8 + 7 × 10

a · b = 36 + 16 + 70

a · b = 122

Now for the other formula:

a · b = |a| × |b| × cos(θ)

But what is |a| ? It is the magnitude, or length, of the vector a. We can use Pythagoras:

  • |a| = √(42 + 82 + 102)
  • |a| = √(16 + 64 + 100)
  • |a| = √180

Likewise for |b|:

  • |b| = √(92 + 22 + 72)
  • |b| = √(81 + 4 + 49)
  • |b| = √134

And we know from the calculation above that a · b = 122, so:

a · b = |a| × |b| × cos(θ)

122 = √180 × √134 × cos(θ)

cos(θ) = 122 / (√180 × √134)

cos(θ) = 0.7855...

θ = cos -1(0.7855...) = 38.2...°

Done!

I tried a calculation like that once, but worked all in angles and distances ... it was very hard, involved lots of trigonometry, and my brain hurt. The method above is much easier.

Cross Product

The Dot Product gives a scalar (ordinary number) answer, and is sometimes called the scalar product.

But there is also the Cross Product which gives a vector as an answer, and is sometimes called the vector product.

Dot Product

标签:between   more   form   http   head   dir   involved   height   ide   

原文地址:http://www.cnblogs.com/McKean/p/6087669.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!