标签:ring heap end partition main public int priority length
The common solutions for top k problem are heap (priority queue) and quick selection. Using heap is very straight-forward, while quick selection with partition is more complicated and I didnot find any satisfying code online, so document as following.
References:
Explanation (written by python): https://www.youtube.com/watch?v=SXXpkdruLfc
Quicksort template: http://www.jiuzhang.com/solutions/quick-sort/
public static int partition(int[] a, int start, int end) { int pivot = start; int i = start+1; int j = end; while (i <= j) { while (i <= j && a[i] <= a[pivot]) { i++; } while (i <= j && a[j] > a[pivot]) { j--; } if (i <= j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } } int temp = a[pivot]; a[pivot] = a[j]; a[j] = temp; return j; } public static int quick(int[] a, int start, int end, int k ){ if (start == end) return a[start]; if (start < end) { int pivot = partition(a, start, end); int length = pivot - start + 1; if (length == k) return a[pivot]; if (length > k) { return quick(a,start,pivot-1,k); } else { return quick(a, pivot+1, end, k-length); } } return -1; } public static void main(String[] args) { // TODO Auto-generated method stub int[] a = {72,5,57,88,60,5,38,73,48,85}; //int[] a = {1,1,1,1,1,1}; int index = 4; System.out.println("Before sorting " + Arrays.toString(a)); System.out.println("My answer: " + quick(a, 0, a.length-1,index)); Arrays.sort(a); System.out.println("After sorting " + Arrays.toString(a)); System.out.println("Correct answer: " + a[index-1]); }
标签:ring heap end partition main public int priority length
原文地址:http://www.cnblogs.com/kkkiii/p/6087725.html