码迷,mamicode.com
首页 > 其他好文 > 详细

LeetCode120 Triangle

时间:2016-11-22 22:28:04      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:path   bottom   follow   ext   pat   from   自底向上   tom   min   

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.(Medium)

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

分析:

经典的动态规划题,可以有自顶向下,自底向上的解法,是自己学动态规划的第一道题,就不分析了,写一个自底向上的解法。

代码:

 1 class Solution {
 2 public:
 3     int minimumTotal(vector<vector<int>>& triangle) {
 4         int sz = triangle.size();
 5         if (sz == 0) {
 6             return 0;
 7         }
 8         int dp[sz][sz];
 9         for (int i = 0; i < sz; ++i) {
10             dp[sz - 1][i] = triangle[sz - 1][i];
11         }
12         for (int i = sz - 2; i >= 0; --i) {
13             for (int j = 0; j <= i; ++j) {
14                 dp[i][j] = min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j];
15             }
16         }
17         return dp[0][0];
18     }
19 };

 

LeetCode120 Triangle

标签:path   bottom   follow   ext   pat   from   自底向上   tom   min   

原文地址:http://www.cnblogs.com/wangxiaobao/p/6091170.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!