标签:开始 ipa 理解 翻译 思考 排序算法 矩阵 分类算法 挖掘
我们经常谈论的推荐系统(Recommender System),从形式上看是比较“静态”的推荐,通常位于网页主要信息的周边,比如电商网站的“看了又看”、“买了又买”。这种推荐系统在大多数场景下无法独立撑起一款产品。
依据维基百科Recommender System词条的定义:“推荐系统是信息过滤系统的子类,专门用于预测用户对一个项目偏好或者评分进行预测”,则兴趣Feed也是一种推荐系统:它预测用户对社交网络中相邻节点动态内容喜好程度,并根据喜好程度决定这些动态内容的展示顺序。
Feed是一种信息流,就是我们看到的“动态”、“新鲜事”。当用户与一些内容源建立了连接(如关注、赞、收藏等)之后,这些内容源产生的新动作,就会源源不断地通过连接流向用户,不同内容源产生的动态被聚合后呈现在用户面前,就是Feed。
传播社交网络动态的Feed,通常默认按照动态产生的时间顺序出现在你面前,称为时间线(timeline)。国外的Twitter、Instagram,一开始都是时间线形式的Feed;国内的微博、QQ空间、微信朋友圈至今仍然是时间线。
但是一些老牌时间线Feed都有计划要切换成依据算法排序的个性化兴趣Feed,微博在2012年尝试过智能排序,Twitter在去年上线了一个叫做“当你不在时发生了什么”的功能,Facebook甚至早就放弃对其NewsFeed的时间线排序。
出现这种情况的原因主要有两个。一方面,智能手机的普及和移动网络的提速,使得UGC越来越容易,用户动态的产生和浏览越来越碎片化,数量和频度陡增,以前用户消费无压力的时间线Feed,开始出现信息过载或者错过一些更感兴趣的内容的情况。Instagram说他们的用户平均错过了70%的内容,Facebook也曾说每个用户每天只能看完1500条新鲜事中的300条而已。另一方面,时间线Feed不利于商业化的开展,商业账号肆无忌惮地以动态的方式发布广告,不仅影响用户体验,还完全绕过平台方进行商业活动,形成一种“公共资源悲剧”。
所以,Feed的发展趋势必然是从时间线到利用算法重排序,按照用户兴趣的相关程度展示Feed,一方面要帮用户解决信息过载问题,另一方面要平衡好平台上的商业价值和用户体验。
一个成功的兴趣Feed,就是Facebook的NewsFeed。那是2006年9月,Facebook上线了朋友新鲜事,与之同时问世的还有MiniFeed(个人动态)。上线至今十周年,NewsFeed已经成为日收入几千万美元的现金牛。
Facebook刚上线这个功能时,曾引发广泛的争议,焦点就是“隐私”问题——我的动态怎么能让别人看见呢?用户不停质疑和抗议,又忍不住继续使用,Facebook就在争议声中增加了最初的隐私控制功能,比如隐藏自己的动态,而NewsFeed就这样坚持了下来。
2009年,Facebook在收购FriendFeed之后,将其赞(like)功能整合进了NewsFeed中,并开始按照热门程度对Feed重排序,这又引起了用户们的反抗,因为大家已经习惯按照时间顺序阅读。
10年来,NewsFeed有数不清的改进,甚至每天线上会同时部署很多算法版本进行AB测试。但EdgeRank算法是这条改进之路的一个标志性建筑,我们可以将NewsFeed排序策略分为EdgeRank前时代、EdgeRank时代和EdgeRank后时代。
在EdgeRank前时代,按照Facebook首席产品官Chris Cox的说法:“最初,NewsFeed排序就是在拍脑袋,给照片加点权重,给系统消息降点权重。”我们的算法工程师们读到这些,想必要会心一笑:今天高大上的Facebook,又是人工智能又是深度学习,竟然也是从这个时代走过来的。
之后,Serkan Piantino(现任Facebook人工智能研究院工程总监)在2010年左右领导开发了第一版EdgeRank算法。
了解大名鼎鼎的EdgeRank是怎么回事,先看朋友的一条新鲜事(动态)诞生后怎么流动到你的面前:
这几个步骤,大致刻画了EdgeRank的思想,简单直接。基于这个假设,EdgeRank排序算法主要考虑了三个因素:
三个分数,最终用相乘的方式共同作用于每一条新鲜事的分数,用于排序和筛选,如图1所示。这个排序方法的确很简单,只是量化了三个主要因素,然后主观地相乘,没有任何目标优化思想在背后。根据Facebook披露的消息,早期的EdgeRank的确没有引入机器学习,所以根本称不上是智能的算法。
2011年之后,Facebook内部就不再提EdgeRank算法了,NewsFeed进入EdgeRank后时代。此时的Facebook,月活跃用户超过10亿,约2000万的公共主页,移动设备贡献了大多数流量,面对复杂的上下文因素,必须引入机器学习才能Hold整个场面。
引入机器学习的好处显而易见,原来考虑的因素就是机器学习模型的特征,一个线性模型可以处理大规模的稀疏特征,并且会为每一个特征寻找到最优的参数(即权重)。在这样的框架下,产品和工程人员只需要去尽力发现那些影响排序的特征,然后把特征交给机器学习模型,就万事大吉。
NewsFeed团队成员在原来EdgeRank的基础上,更加细致地定义了不同层级的亲密度。用深度神经网络理解图片内容和文字内容,可以知道相片中的物体是不是用户感兴趣的,还可以分析出新鲜事的讨论话题用于排序。随着产品迭代,考虑的排序因素越来越多,诸如阅读时间长短、视频内容、链接内容,或者取关、隐藏一个源等。前前后后一共考虑了10万多的排序因素(模型的特征空间应该会更高),如果还按照原来的方式去调节权重,显然既不科学又很低效。
除了全面转向机器学习之外,NewsFeed团队也在重新思考人和算法的关系。他们要关心的是到底“如何把用户真正最关心的找出来”,而不仅仅是“如何提高点击率”。Facebook一直是数据驱动的,这也是他们能够在争议中把NewsFeed坚持下来的信念来源,但是不是唯数据马首是瞻,团队内部一直有很多思考。比如:
这些都让他们开始关注到机器学习和数据的局限。于是,在算法团队之外,Facebook搭建了一个遍布全球的人肉评测小组。人肉评测小组的工作不是简单地对算法筛选结果进行喜欢/不喜欢的标注,而是非常深入地阐述为什么喜欢/不喜欢算法筛选结果,而且他们会与工程师详细交流评测结果,因为这种人肉评测方式可以有效地拆穿数据说谎,让产品远离一味追求提高数据指标的怪圈。
此外,NewsFeed还有两个重要的配套设施:社交关系推荐系统和广告系统。
NewsFeed存在是因为用户建立了大量的社交联系,出现信息过载,因此“你可能感兴趣的人”(people you may know)推荐系统是必不可少的,这是NewsFeed“合法”存在的前提。
这是一个我们在产品形式上比较熟悉的推荐系统,它的核心是一套大规模矩阵分解算法,利用已有的协同矩阵为你推荐可能想建立联系的新Item,包括用户、App、公共主页等。
Facebook的广告形态非常多样,包括:
所有的数据都显示,重排序后的NewsFeed可以让用户阅读积极性提高很多。因此,虽然外界一直有质疑和争吵,但是NewsFeed重排序并没有停止过。显然“大家一起穷,各自拼人品”的时间线不符合商业社会的基本哲学,提高效率的兴趣Feed才是一种必然。
兴趣Feed如何实现?这里先介绍创意内容收集工具Pinterest的Smart Feed,然后总结一些通用技术点。
整个Smart Feed后端主要模块逻辑如图2,由三个部分构成:
后台任务(worker)
Worker的职责有两个:
打了分的Pin就会根据其不同来源分开存储(Pool)。存储结构是一个优先队列,按照打分排序,新的Pin进来和原来(但用户还未看)的Pin一起排序。
这个存储的Pool可以直接用KV数据库顶上,HBase、Redis都可以,每次送入数据库的数据是一个三元组:(user, pin, score)。Pinterest选用的是HBase。一共有两个HBase集群,一个存还没看过的Pin,一个存已经看过的Pin。
当数据源产生了新的Pin之后,需要由一个叫PinLater的模块经过Zen(封装了HBase基本操作的图数据存储模块)推送给粉丝。这里推送是异步的,有几秒到几分钟的延迟。
内容生成器(Content Generator)
如图4,内容生成器要做的是:
每一次产生的待推送内容合在一起叫做一个“块”(chunk)。
前端服务(Feed service)
如图5,Feed service提供前端的服务。为了提供高可用服务,Feed service的任务有二个:
http://ipad-cms.csdn.net/cms/attachment/201606/574d36823af59.png
Pinterest排序算法
排序算法名字叫做Pinnability。我们可以将其翻译成“可Pin度”,可Pin度是一组机器学习模型,用于衡量一个用户对一条Pin产生互动的可能性。
Pinnability模型用到的机器学习算法都是比较常用的模型,包括逻辑回归(LR)、支持向量机(SVM)、GBDT和卷积神经网络(CNN)。整个Pinnability的模型流程如图7所示。模型产生的流程分为三个阶段:准备训练数据、训练模型、上线使用。
分析完Pinterest的兴趣Feed实现,我们再总结一下一个通用的兴趣Feed需要考虑哪些方面。
整体逻辑
整体逻辑上,一个兴趣Feed逻辑结构大致如图8所示。
数据模型
Feed这种形式又叫做Activity Stream。顾名思义,就是用户的动作(Activity)形成的数据流(Stream)。
Feed的基本数据有三个:用户(User)、动态(Activity)和关系(Connection)。
表达用户动态(Activity)的元素有相应的规范,叫做Atom,可以参考它,并结合产品需求,定义出自己的Feed数据模型。根据Atom的定义,一条动态包含以下元素:
举个例子: 2016年5月6日23:51:01(Time)@刑无刀(Actor)分享了(Verb) 一条微博(Object)给 @ResysChina(Target)。Title就是前面这句话去掉括号后的内容,Summary暂略。
关系即连接。互联网产品里处处皆连接,有强有弱,好友关系、关注关系等社交是较强的连接,还有点赞、收藏、评论、浏览,这些动作都可以认为用户和另一个对象之间建立了连接。有了连接,就有Feed的传递和发布。
定义一个连接的元素有:
如果把建立一个连接也视为一个Atom模型的话,from就对应其中的Actor,to就对应其中的Object。
连接的发起从from到to,动态的流动从to到from。连接和动态是相互加强的,类似蛋和鸡的关系:有了动态,就会产生新的连接;有了新的连接,就可以喂(Feed)给你更多的动态内容。
发布新动态
用户登录/刷新后,Feed是怎么产生的?内容出现在受众的Feed中,这个过程称为Fan-out。
我们的直觉上是这样实现的:
这就是行话说的拉模式(Fan-out-on-load),Feed是在用户登录/刷新后实时产生的。
拉模式的好处如下:
但是也存在不足:
与拉模式对应的,还有一个推模式(Fan-out-on-write)。
当一个用户(Actor)产生了一条Activity后,不管受众是否刷新,立即将这条内容推送给相应的用户(和这个Actor建立了连接的人),系统为每一个用户单独开辟一个Feed存储区域,用于接收推送的内容。当用户登录后,系统只需要读取他自己的Feed即可。
推模式的好处显而易见:在用户访问自己的Feed时,几乎没有任何复杂的查询操作,所以服务可用性较高。
推模式也有如下的不足:
既然两者各有优劣,那么将两者结合起来呢?一种简单的结合方案是全局的:
还有一种结合方案是分用户的,这是Etsy的设计方案:
在中小型的社交网络上,采用纯推模式就够用了,结合的方案可以等业务发展到一定规模后再考虑。
一个推模式的Feed发布实现很简单:
按兴趣排序
兴趣Feed的排序,要避免陷入两个误区:
我们从机器学习的思路来简单设计一个提升互动率的兴趣Feed。首先,定义好互动行为包括哪些,比如点赞、转发、评论和查看详情等。其次,区分好正向互动和负向互动,比如隐藏某条内容、点击不感兴趣等是负向的互动。
这是一个典型的二分类监督学习问题,将正向的互动视为同一类。一条动态产生之后,展示给用户之前,用机器学习来预测用户对产生正向互动的概率,预测的概率就可以作为兴趣排序分数输出。
能产生概率输出的二分类算法都可以用在这里,包括贝叶斯、最大熵和逻辑回归等。互联网常用的是逻辑回归,它有很多好处:
用机器学习来为兴趣Feed排序,最重要的是将<动态,受众>这个数据对表示成特征向量。特征向量就是排序因素的向量化表述。在算法选定后,人工可以花很多力气在寻找影响排序的因素上,这就是传说中的“特征工程”。特征工程还包括对已有的特征进行选择,选择的目的是:机器学习模型完成后,以RPC的方式提供服务,供Feed系统中新动态内容发布时调用。
关于RPC框架,选用Apache Thrift即可。机器学习模型训练框架有很多,我们可以选Vowpal Wabbit,它是一个分布式机器学习框架,可以和Hadoop轻松结合。
数据和效果追踪
我们既要通过历史数据来寻找算法的最优参数,又要通过新的数据验证排序效果,所以我们要关注数据的存储和使用。
与兴趣Feed相关的数据有:
日志的收集和存储,一般选用Kafka和Hadoop即可,用Hive处理数据,生成训练样本,监控产品指标。其中比较重要的是模型的参数更新,即训练模型。
对于一个初级的兴趣Feed,没必要做到在线实时更新排序算法的参数,所以数据的pipeline可以借鉴Pinterest。例如,选用逻辑回归预测互动行为排序Feed,离线阶段关注模型的AUC是否有提升。
另外,互动数据相比全部曝光数据,数量会小得多,所以在生成训练数据时需要对负样本(展示了却没有产生互动的样本)进行采样,采样比例也是一个可以优化的参数,固定算法和特征后选择效果最好的比例。
AB测试时关注具体的产品目标是否有提升,比如互动率等,同时还要根据产品具体形态关注一些辅助指标。
兴趣Feed是在互联网深度发展之后的一种必然趋势,很多Feed类产品都已经在数据上验证了这一点。但是我们还是要清醒地认识到:兴趣Feed类产品虽然概念简单,挑战却不少。
时间排序的Feed非常自然,用户很容易接受。而一旦用算法决定Feed的排列顺序,用户是否能够接受,非常挑战产品的设计能力。尤其是如果一开始是时间线Feed,要转变成兴趣Feed,这个切换相对于一开始就是兴趣Feed,用户习惯改变要更难一些。
面对这一挑战,我们需要考虑几点:
在一个需要用算法排序的Feed类产品上,数据量级应该不会小了,而且如果兴趣Feed真的有效,那么数据量增加速度也会提升,所以相应的技术挑战会很快出现。
我们不得不承认,算法是有边界的。只不过很多产品距离边界还很远,还没有充分把数据中蕴含的价值挖掘出来。Facebook建立人肉评测小组,说明他们已经非常重视利用人的创造力弥补算法的不足。
由于大多数人在大多数情况下是非理性的,感兴趣的标准也会呈现不一致的情况,再加上社会群体心理的干扰,为个人寻找兴趣内容是一个非常复杂的课题。
另外,算法本身的引入,也给整个产品增加了复杂度,在算法干预下再测量用户对内容的感兴趣程度,很类似量子理论中的“测不准原理”。
面对算法接管我们的Feed内容,我们既不能做出太多主观决策,相信科学的算法一定能够得到比纯人力主观指定的规则更好的结果,但是也不能偷懒,需要从数据中得到启示,用我们上帝般的视角巡视整个局面,帮助算法表现得更好。
标签:开始 ipa 理解 翻译 思考 排序算法 矩阵 分类算法 挖掘
原文地址:http://www.cnblogs.com/onetwo/p/6097284.html