码迷,mamicode.com
首页 > 其他好文 > 详细

单因素特征选择--Univariate Feature Selection

时间:2016-11-24 18:36:00      阅读:291      评论:0      收藏:0      [点我收藏+]

标签:upper   als   ant   ctp   info   first   stack   shape   import   

An example showing univariate feature selection.

Noisy (non informative) features are added to the iris data and univariate feature selection(单因素特征选择) is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights.

In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification.

#encoding:utf-8
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets,svm
from sklearn.feature_selection import SelectPercentile,f_classif

###load iris dateset
iris=datasets.load_iris()

###Some Noisy data not correlated
E=np.random.uniform(0,0.1,size=(len(iris.data),20)) ###uniform distribution   150*20
X=np.hstack((iris.data,E))
y=iris.target

plt.figure(1)
plt.clf()

X_indices=np.arange(X.shape[-1])   ###X.shape=(150,24)    X.shape([-1])=24

selector=SelectPercentile(f_classif,percentile=10)
selector.fit(X,y)
scores=-np.log10(selector.pvalues_)
scores/=scores.max()

plt.bar(X_indices-0.45,scores,width=0.2,label=r"Univariate score ($-Log(p_{value})$)",color=‘darkorange‘)
# plt.show()


####Compare to weight of an svm
clf=svm.SVC(kernel=‘linear‘)
clf.fit(X,y)

svm_weights=(clf.coef_**2).sum(axis=0)
svm_weights/=svm_weights.max()
plt.bar(X_indices - .25, svm_weights, width=.2, label=‘SVM weight‘,
        color=‘navy‘)
clf_selected=svm.SVC(kernel=‘linear‘)
# clf_selected.fit(selector.transform((X,y)))
clf_selected.fit(selector.transform(X),y)

svm_weights_selected=(clf_selected.coef_**2).sum(axis=0)
svm_weights_selected/=svm_weights_selected.max()

plt.bar(X_indices[selector.get_support()]-.05,svm_weights_selected,width=.2,label=‘SVM weight after selection‘,color=‘c‘)

plt.title("Comparing feature selection")
plt.xlabel(‘Feature number‘)
plt.yticks(())
plt.axis(‘tight‘)
plt.legend(loc=‘upper right‘)
plt.show()

 实验结果:

技术分享

 

单因素特征选择--Univariate Feature Selection

标签:upper   als   ant   ctp   info   first   stack   shape   import   

原文地址:http://www.cnblogs.com/itdyb/p/6098513.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!