标签:for -- 使用 iostream not ++ 差分 insert 好处
本题考查你会不会编程。
//toy //by Cydiater //2016.11.19 #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <map> #include <ctime> #include <cmath> #include <iomanip> #include <bitset> #include <set> using namespace std; #define ll long long #define up(i,j,n) for(int i=j;i<=n;i++) #define down(i,j,n) for(int i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define FILE "toy" const int MAXN=1e5+5; const int oo=0x3f3f3f3f; inline int read(){ char ch=getchar();int x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int N,M,Step,F,now=0; struct Data{ char s[25]; int pos,f,len; }a[MAXN]; namespace solution{ void init(){ N=read();M=read(); up(i,0,N-1){ a[i].f=read();scanf("%s",a[i].s+1); a[i].len=strlen(a[i].s+1);a[i].pos=i; } } void slove(){ while(M--){ F=read();Step=read(); if(F==a[now].f) F=-1; else F=1; now=((now+N+F*Step)%N+N)%N; } } void output(){ up(i,1,a[now].len)printf("%c",a[now].s[i]); puts(""); } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; init(); slove(); output(); return 0; }
这道题其实放在T2并不合适,相比去年的D1T2要难太多。
首先如果忽略观测时间的话,这就是个很简单的树上差分问题。同样,这道题也需要用树上差分解决。对于一颗树,从$x$到$y$的路径可以拆分成两个部分:$x \leftarrow lca$和$lca \rightarrow y$。那么,我们就可以把整条路径拆成这两个部分单独考虑。即所有路径拆分过后只有两种形式:从深度浅的指向深度深的,和从深度深的指向深度浅的。接下来考虑题目要求。设$v_i$表示第$i$点的值,$dep_i$表示第$i$个点的深度,有一条$x \rightarrow y(dep_x < dep_y)$的路径,那么对于每个符合要求的点,必有$dep_i-v_i=dep_x$,即$dep_i-v_i$是一个定值,同样的,从下指上的,$dep_i+v_i$是一个定值。
这样问题就转化成了给定一条深度递增/递减的路径,把路径上的点$dep_i \pm v_i$为某一值的点加1。
考虑使用树上差分解决。对于一条$x \rightarrow y(dep_x<dep_y)$这样的路径,要将其中$dep_i-v_i=dep_x$的点全部加一,在$fa_x$上插入$(dep_x,-1)$这样的状态(用pair+vector维护),在$y$上插入$(dep_x,1)$这样的状态。另外的情况同理。
这样的话用Tarjan在$O(N+M)$的时间内求出所有的lca,然后每个询问在$O(1)$的时间内打个标记就行了。
但是问题是,最后的统计似乎并不是很好处理。
首先,搞出DFS序。对于每个点我们很好搞出其对应的区间。再次利用离线和差分的思想,把所有需要操作的区间存下来。搞两个数组$cnt_1$和$cnt_2$分别记录$dep_i \pm v_i$的答案,然后遍历DFS序,每次访问到一个节点,先更新其对$cnt_1$和$cnt_2$的贡献,最后更新其对应区间的答案。(看代码比较直观
//NOIP2016D1T2 //by Cydiater //2016.11.26 #include <iostream> #include <cmath> #include <cstdlib> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <map> #include <ctime> #include <bitset> #include <cstdio> #include <set> #include <iomanip> #include <vector> using namespace std; #define ll long long #define pii pair<int,int> #define up(i,j,n) for(int i=j;i<=n;i++) #define down(i,j,n) for(int i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define Auto(i,node) for(int i=LINK[node];i;i=e[i].next) #define FILE "running" const int MAXN=3e5+5; const int oo=0x3f3f3f3f; inline int read(){ char ch=getchar();int x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int N,M,LINK[MAXN],len=0,lable[MAXN],G[MAXN],fa[MAXN],dep[MAXN],dfn[MAXN],Pos[MAXN],dfs_clock,siz[MAXN],cnt1[MAXN<<2],cnt2[MAXN<<2],ans[MAXN]; bool vis[MAXN]; struct edge{ int y,next; }e[MAXN<<1]; struct PATH{ int x,y,lca; }Path[MAXN]; vector<pii> fri[MAXN],tag1[MAXN],tag2[MAXN],LR[MAXN]; namespace solution{ inline void insert(int x,int y){e[++len].next=LINK[x];LINK[x]=len;e[len].y=y;} inline void Insert(int x,int y){insert(x,y);insert(y,x);} int getf(int k){ if(G[k]==k) return k; G[k]=getf(G[k]); return G[k]; } void init(){ N=read();M=read(); up(i,2,N){ int x=read(),y=read(); Insert(x,y); } up(i,1,N)lable[i]=read(); up(i,1,M){ int x=read(),y=read(); Path[i].x=x;Path[i].y=y; fri[x].push_back(make_pair(i,y)); fri[y].push_back(make_pair(i,x)); } } void Tarjan(int node){ G[node]=node;vis[node]=1;dfn[node]=++dfs_clock;Pos[dfs_clock]=node; siz[node]=1; Auto(i,node)if(!vis[e[i].y]){ dep[e[i].y]=dep[node]+1; Tarjan(e[i].y); G[e[i].y]=node;fa[e[i].y]=node; siz[node]+=siz[e[i].y]; } up(i,0,(int)(fri[node].size()-1)) if(vis[fri[node][i].second]) Path[fri[node][i].first].lca=getf(fri[node][i].second); } void make_tag(int x,int y,int st,bool flag=false){ if(dep[x]<=dep[y]){ int fx=fa[x]; if(fx)tag1[fx].push_back(make_pair(st-dep[x],-1)); tag1[y].push_back(make_pair(st-dep[x],1)); }else{ int fy=fa[y]; if(flag) tag2[y].push_back(make_pair(st+dep[x],-1)); else if(fy) tag2[fy].push_back(make_pair(st+dep[x],-1)); tag2[x].push_back(make_pair(st+dep[x],1)); } } void slove(){ Tarjan(1);//O(N+M) LCA and some op up(i,1,M){ int x=Path[i].x,y=Path[i].y,lca=Path[i].lca; if(lca==x||lca==y)make_tag(x,y,0); else{ make_tag(x,lca,0,true); make_tag(lca,y,dep[x]-dep[lca]); } } up(i,1,N){ LR[dfn[i]-1].push_back(make_pair(i,-1)); LR[dfn[i]+siz[i]-1].push_back(make_pair(i,1)); } int Delta=N<<1; up(i,1,N){ int node=Pos[i]; up(j,0,(int)(tag1[node].size()-1))cnt1[tag1[node][j].first+Delta]+=tag1[node][j].second; up(j,0,(int)(tag2[node].size()-1))cnt2[tag2[node][j].first+Delta]+=tag2[node][j].second; up(j,0,(int)(LR[i].size()-1)){ pii tmp=LR[i][j]; ans[tmp.first]+=cnt1[lable[tmp.first]-dep[tmp.first]+Delta]*tmp.second; ans[tmp.first]+=cnt2[lable[tmp.first]+dep[tmp.first]+Delta]*tmp.second; } } } void output(){ up(i,1,N)printf("%d ",ans[i]); puts(""); } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; init(); slove(); output(); return 0; }
制杖DP,但是赛场上被T2搞懵了,没有认真分析这道题。
首先,肯定要用Floyd搞出$g_ij$表示任意两点的最短路径。然后设$f[i][j][0/1]$表示第$i$个课程,申请了$j$次,这一次是否申请的最小答案。
然后很好得到以下转移方程。
$f[i][j][0]=min(f[i-1][j][0]+g[c[i-1]][c[i]],f[i-1][j][1]+g[d[i-1]][c[i]] \times P[i-1]+g[c[i-1]][c[i]] \times (1-P[i-1]))$
$f[i][j][1]=min(f[i-1][j-1][0]+g[c[i-1]][d[i]]\times P[i]+g[c[i-1]][c[i]]\times (1-P[i]),(f[i-1][j-1][1]+g[d[i-1]][d[i]]) \times P[i-1] \times P[i]+(f[i-1][j-1][1]+g[d[i-1]][c[i]])*P[i-1] \times (1-P[i])+(f[i-1][j-1][1]+g[c[i-1]][d[i]]) \times (1-P[i-1]) \times P[i]+(f[i-1][j-1][1]+g[c[i-1]][c[i]]) \times (1-P[i-1]) \times (1-P[i]))$
//NOIP2106D1T3 //Cydiater //2016.11.25 #include <iostream> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <map> #include <ctime> #include <cmath> #include <cstdlib> #include <iomanip> #include <bitset> #include <set> using namespace std; #define ll long long #define db double #define up(i,j,n) for(int i=j;i<=n;i++) #define down(i,j,n) for(int i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define FILE "classroom" const int MAXN=2005; const int MAXX=305; const db oo=1e20; inline int read(){ char ch=getchar();int x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int N,M,V,E,c[MAXN],d[MAXN],g[MAXX][MAXX]; db P[MAXN],f[MAXN][MAXN][2],ans=oo; namespace solution{ void init(){ N=read();M=read();V=read();E=read(); if(N==1){ puts("0.00"); exit(0); } memset(g,10,sizeof(g)); up(i,1,N)c[i]=read(); up(i,1,N)d[i]=read(); up(i,1,N)scanf("%lf",&P[i]); up(i,1,V)g[i][i]=0; up(i,1,E){ int x=read(),y=read(),v=read(); cmin(g[x][y],v); cmin(g[y][x],v); } } void slove(){ up(i,0,MAXN-1)up(j,0,MAXN-1)up(k,0,1)f[i][j][k]=oo; up(k,1,V)up(i,1,V)up(j,1,V)cmin(g[i][j],g[i][k]+g[k][j]); f[1][0][0]=f[1][1][1]=0; up(i,2,N){ f[i][0][0]=f[i-1][0][0]+g[c[i-1]][c[i]]; up(j,1,min(M,i)){ f[i][j][0]=min(f[i-1][j][0]+g[c[i-1]][c[i]],f[i-1][j][1]+g[d[i-1]][c[i]]*P[i-1]+g[c[i-1]][c[i]]*(1-P[i-1])); f[i][j][1]=f[i-1][j-1][0]+g[c[i-1]][d[i]]*P[i]+g[c[i-1]][c[i]]*(1-P[i]); db part1=(f[i-1][j-1][1]+g[d[i-1]][d[i]])*P[i-1]*P[i];//both applies passed db part2=(f[i-1][j-1][1]+g[d[i-1]][c[i]])*P[i-1]*(1-P[i]);//second apply not passed db part3=(f[i-1][j-1][1]+g[c[i-1]][d[i]])*(1-P[i-1])*P[i];//first apply not passed db part4=(f[i-1][j-1][1]+g[c[i-1]][c[i]])*(1-P[i-1])*(1-P[i]);//both applies passed cmin(f[i][j][1],part1+part2+part3+part4); if(i==N)cmin(ans,min(f[i][j][0],f[i][j][1])); } if(i==N)cmin(ans,f[i][0][0]); } printf("%.2lf\n",ans); } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; init(); slove(); return 0; }
Day1的题目水平相当高,特别是T2坑住了一堆弱如我这般赛场上暴力写挂又想不出正解的制杖。但是难度分配确实不合理蛙,T2和T3应该调换一下顺序这场比赛才比较好..
//CCF公开膜吃枣药丸
题目好评,对初学者不太友好。
首先组合数的递推公式:$C_i^j=C_{i-1}^j+C_{i-1}^{j-1}$。这个要知道,然后在递推时对$k$取个余,最后统计一下矩阵就行了。(不是很懂质因数分解那一套
//problem //by Cydiater //2016.11.20 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <algorithm> #include <iomanip> #include <ctime> #include <cmath> #include <queue> #include <map> #include <bitset> #include <set> using namespace std; #define ll long long #define up(i,j,n) for(int i=j;i<=n;i++) #define down(i,j,n) for(int i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define FILE "problem" const ll MAXN=2000+5; const ll LIM=2000; const ll oo=0x3f3f3f3f; inline ll read(){ char ch=getchar();ll x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } ll C[MAXN][MAXN],T,K,ans[MAXN][MAXN]; namespace solution{ void slove(){ T=read();K=read(); memset(C,0,sizeof(C)); memset(ans,0,sizeof(ans)); up(i,0,LIM)C[i][0]=1; up(i,1,LIM)up(j,1,i)C[i][j]=(C[i-1][j-1]+C[i-1][j])%K; up(i,1,LIM)up(j,i+1,LIM)C[i][j]=-1; up(i,1,LIM){ up(j,1,LIM){ if(C[i][j]==0)ans[i][j]++; ans[i][j]+=ans[i-1][j]+ans[i][j-1]-ans[i-1][j-1]; } } while(T--){ ll x=read(),y=read(); printf("%lld\n",ans[x][y]); } } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; slove(); return 0; }
很容易看出来就是个堆,但是显然想AC需要线性算法。通过打表我们可以发现蚯蚓每次切割的长度是单调递增的,而每次被切成两段的总是单调递减的。于是我们就可以用三个单调队列来维护没被切断的,切断的短的那一段,切断的长的那一段,每次取个max即可。
//NOIP2016 D2T2 //by Cydiater //2016.11.24 #include <iostream> #include <queue> #include <map> #include <ctime> #include <cmath> #include <cstdlib> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <iomanip> #include <bitset> #include <set> using namespace std; #define ll long long #define up(i,j,n) for(int i=j;i<=n;i++) #define down(i,j,n) for(int i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define FILE "earthworm" const ll MAXN=1e7+5; const ll oo=1LL<<55; inline ll read(){ char ch=getchar();ll x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } ll N,M,Q,U,V,T,_old[MAXN],_short[MAXN],_long[MAXN],t1=0,t2=1,t3=1,top2=0,top3=0,cnt=0,delta=0; namespace solution{ void init(){ N=read();M=read();Q=read();U=read();V=read();T=read(); up(i,1,N)_old[++t1]=read(); sort(_old+1,_old+t1+1); _old[0]=_short[0]=_long[0]=-oo; } void slove(){ while(M--){ ll now=max(_old[t1],max(_short[t2],_long[t3])); if(now==_old[t1])t1--; else if(now==_short[t2])t2++; else if(now==_long[t3])t3++; now+=delta; if(!(++cnt%T))printf("%d ",now); ll __short=now*U/V,__long=now-__short; delta+=Q; _short[++top2]=__short-delta;_long[++top3]=__long-delta; } cnt=0;puts(""); M=t1+top2+top3-t2-t3+2; while(M--){ ll now=max(_old[t1],max(_short[t2],_long[t3])); if(now==_old[t1]&&t1>0)t1--; else if(now==_short[t2]&&t2<=top2)t2++; else if(now==_long[t3]&&t3<=top3)t3++; if(t2>top2)_short[t2]=-oo; if(t3>top3)_long[t3]=-oo; if(!(++cnt%T))printf("%lld ",now+delta); } } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; init(); slove(); return 0; }
状压DP一眼题。但是一眼的复杂度是$O(2^N N^2)$的,会被卡掉。
考虑优化掉一个$N$。其实每次转移时只需要处理第一个没被攻击的猪就好了,这样的话复杂度降低到$O(2^N N)$可以顺利通过。
//angrybirds //by Cydiater //2016.11.20 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <algorithm> #include <iomanip> #include <ctime> #include <cmath> #include <queue> #include <map> #include <bitset> #include <set> using namespace std; #define ll long long #define up(i,j,n) for(ll i=j;i<=n;i++) #define down(i,j,n) for(ll i=j;i>=n;i--) #define cmax(a,b) a=max(a,b) #define cmin(a,b) a=min(a,b) #define FILE "angrybirds" #define eps 1e-6 const int MAXN=25; const int MAXX=1<<18+5; inline int read(){ char ch=getchar();int x=0,f=1; while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} return x*f; } int N,M,S[MAXN][MAXN],f[MAXX],T,top[MAXN]; struct XY{ double x,y; }xy[MAXN]; namespace solution{ void init(){ N=read();M=read(); memset(top,0,sizeof(top)); memset(f,10,sizeof(f));f[0]=0; up(i,0,N-1)scanf("%lf %lf",&xy[i].x,&xy[i].y); up(i,0,N-1){ xy[i].x*=100; xy[i].y*=100; } } inline bool OK(double a,double b,XY t){ double x=t.x,y=t.y; if(abs(y-(x*x*a+b*x))<=eps)return 1; return 0; } void slove(){ up(i,0,N-1){ S[i][++top[i]]=(1<<i); up(j,i+1,N-1){ double x=xy[i].x,y=xy[i].y,_x=xy[j].x,_y=xy[j].y; if(x*_x==0||x-_x==0)continue; double a=y/(x*(x-_x))-_y/(_x*(x-_x)),b=y/x-a*x; if(a+eps>=0)continue; int ss=0; up(k,0,N-1)if(OK(a,b,xy[k]))ss|=(1<<k); S[i][++top[i]]=ss; } } up(i,0,(1<<N)-1) up(j,0,N-1)if(((1<<j)&(i))!=(1<<j)){ up(k,1,top[j])cmin(f[(i|S[j][k])],f[i]+1); break; } } void output(){ printf("%d\n",f[(1<<N)-1]); } } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); using namespace solution; T=read(); while(T--){ init(); if(N==1){puts("1");continue;} slove(); output(); } return 0; }
Day2的题目比较良心,没什么好说的,略水。
标签:for -- 使用 iostream not ++ 差分 insert 好处
原文地址:http://www.cnblogs.com/Cydiater/p/6109194.html