码迷,mamicode.com
首页 > 其他好文 > 详细

opencv_形态学结构化元素对形态学图像处理的影响

时间:2016-11-30 13:31:56      阅读:238      评论:0      收藏:0      [点我收藏+]

标签:block   cat   holo   image   blocks   椭圆   ide   运算   场景   

场景

    对大米预处理之后的二值图像做开运算再做canny边缘检测。

python代码:

技术分享
 1 # kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))  # 椭圆的核
 2 
 3 kernel = np.ones((3,3),np.uint8)    # 去除白色噪点,形态学开运算,3x3线性核
 4 
 5 opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations = 2)
 6 
 7 cv2.imshow("opening",opening)
 8 
 9  
10 
11 edges = cv2.Canny(opening,50,200)
12 
13 cv2.imshow("edges",edges)
View Code

 

得到的图像如下:

    左边为结构化元素椭圆核,右边的为线性核,可以看到左边的明显比右边损失少一点,对特定的图像处理有好处,因此都建议使用结构化元素来构建形态学变换的参数。

    技术分享

 

opencv_形态学结构化元素对形态学图像处理的影响

标签:block   cat   holo   image   blocks   椭圆   ide   运算   场景   

原文地址:http://www.cnblogs.com/jerrybaby/p/6116947.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!