标签:min 表示 algo difficult std lin lib log link
题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率。
析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 k 个题的概率,sum[i][j] 表示第 i 个队伍,做出 1-j 个题的概率,ans1等于,
T个队伍,至少解出一个题的概率,ans2 表示T个队伍,至少解出一个题,但不超过N-1个题的概率,最后用ans1-ans2即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e4 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } double dp[2][35][35]; double a[1005][35]; double sum[1005][35]; int main(){ int t; while(scanf("%d %d %d", &n, &m, &t) == 3 && m+n+t){ for(int i = 1; i <= m; ++i) for(int j = 1; j <= n; ++j) scanf("%lf", &a[i][j]); memset(dp, 0, sizeof dp); dp[1][0][0] = dp[0][0][0] = 1.0; int cnt = 0; for(int i = 1; i <= m; ++i, cnt ^= 1){ for(int j = 1; j <= n; ++j) for(int k = 0; k <= j; ++k) dp[cnt][j][k] = dp[cnt][j-1][k] * (1.0 - a[i][j]) + dp[cnt][j-1][k-1] * a[i][j]; sum[i][0] = 0.0; for(int k = 1; k <= n; ++k) sum[i][k] = sum[i][k-1] + dp[cnt][n][k]; } double ans1 = 1.0, ans2 = 1.0; for(int i = 1; i <= m; ++i) ans1 *= sum[i][n]; for(int i = 1; i <= m; ++i) ans2 *= sum[i][t-1]; printf("%.3f\n", ans1-ans2); } return 0; }
POJ 2151 Check the difficulty of problems (概率DP)
标签:min 表示 algo difficult std lin lib log link
原文地址:http://www.cnblogs.com/dwtfukgv/p/6129647.html