码迷,mamicode.com
首页 > 其他好文 > 详细

float数据在内存中的存储方法

时间:2016-12-08 03:17:06      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:进制   nts   指示   浮点   方法   contents   bsp   数据表示   tail   

浮点型变量在计算机内存中占用4字节(Byte),即32-bit。遵循IEEE-754格式标准。
一个浮点数由2部分组成:底数m 和 指数e。
                          ±mantissa × 2exponent
(注意,公式中的mantissa 和 exponent使用二进制表示)
底数部分 使用2进制数来表示此浮点数的实际值。
指数部分 占用8-bit的二进制数,可表示数值范围为0-255。 但是指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128.
底数部分实际是占用24-bit的一个值,由于其最高位是e位 ,所以最高位省去不存储,在存储中只有23-bit。
到目前为止, 底数部分 23位 加上指数部分 8位 使用了31位。那么前面说过,float是占用4个字节即32-bit,那么还有一位是干嘛用的呢?   还有一位,其实就是4字节中的最高位,用来指示浮点数的正负,当最高位是1时,为负数,最高位是0时,为正数。
   浮点数据就是按下表的格式存储在4个字节中:
                    Address+0       Address+1              Address+2              Address+3
Contents     SEEE EEEE     EMMM MMMM     MMMM MMMM     MMMM MMMM      S: 表示浮点数正负,1为负数,0为正数
      E: 指数加上127后的值的二进制数
      M: 24-bit的底数(只存储23-bit)
主意:这里有个特例,浮点数 为0时,指数和底数都为0,但此前的公式不成立。因为2的0次方为1,所以,0是个特例。当然,这个特例也不用人为去解决,编译器会自动去识别。


      通过上面的格式,我们下面举例看下4.5在计算机中存储的具体数据:
                    Address+0                 Address+1               Address+2            Address+3
Contents        0x40                         0x90                           0x00                      0x00     接下来我们验证下上面的数据表示的到底是不是4.5,从而也看下它的转换过程。
由于浮点数不是以直接格式存储,他有几部分组成,所以要转换浮点数,首先要把各部分的值分离出来。
                  Address+0      Address+1                  Address+2             Address+3
格式         SEEEEEEE     EMMMMMMM       MMMMMMMM     MMMMMMMM
二进制     01000000         10010000               00000000                00000000
16进制     40                         90                            00                            00
       可见:
       S: 为0,是个正数。
       E:为 10000001   转为10进制为129,129-127=2,即实际指数部分为2。
       M:为 00100000000000000000000。 这里,在底数左边省略存储了一个1,使用 实际底数表示为 1.00100000000000000000000
       到此,我们吧三个部分的值都拎出来了,现在,我们通过指数部分E的值来调整底数部分M的值。调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。
      这里,E为正2,使用向右移2为即得:
      100.100000000000000000000
至次,这个结果就是4.5的二进制浮点数,将他换算成10进制数就看到4.5了,如何转换,看下面:
小数点左边的100 表示为 (1 × 22) + (0 × 21) + (0 × 20), 其结果为 4。
小数点右边的 .100… 表示为 (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + ... ,其结果为.5 。
以上二值的和为4.5, 由于S 为0,使用为正数,即4.5 。
所以,16进制 0x40900000 是浮点数 4.5 。

上面是如何将计算机存储中的二进制数如何转换成实际浮点数,下面看下如何将一浮点数装换成计算机存储格式中的二进制数。
举例将17.625换算成 float型。
首先,将17.625换算成二进制位:10001.101   ( 0.625 = 0.5+0.125, 0.5即 1/2, 0.125即 1/8 如果不会将小数部分转换成二进制,请参考其他书籍。) 再将 10001.101 向右移,直到小数点前只剩一位 成了 1.0001101 x 2的4次方(因为右移了4位)。此时 我们的底数M和指数E就出来了:
底数部分M,因为小数点前必为1,所以IEEE规定只记录小数点后的就好,所以此处底数为   0001101 。
指数部分E,实际为4,但须加上127,固为131,即二进制数 10000011 
符号部分S,由于是正数,所以S为0.
综上所述,17.625的 float 存储格式就是:
0 10000011 00011010000000000000000
转换成16进制:0x41 8D 00 00
所以,一看,还是占用了4个字节。

http://blog.csdn.net/flyingleo1981/article/details/52935431

float数据在内存中的存储方法

标签:进制   nts   指示   浮点   方法   contents   bsp   数据表示   tail   

原文地址:http://www.cnblogs.com/findumars/p/6143426.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!