标签:算法
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
dp解法,注意第一行或第一列有一个为1,则该行或该列后到达路径全为0.
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null || obstacleGrid[0][0]==1) return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int [][]f=new int[m][n];
for(int i=0;i<n;i++){
if(obstacleGrid[0][i]==0) f[0][i]=1;
else{
for(int k=i;k<n;k++)
f[0][k]=0;
break;
}
}
for(int j=0;j<m;j++){
if(obstacleGrid[j][0]==0) f[j][0]=1;
else{
for(int k=j;k<m;k++)
f[k][0]=0;
break;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==1) f[i][j]=0;
else{
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
}
return f[m-1][n-1];
}
}滚动数组dp
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null || obstacleGrid[0][0]==1) return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int []f=new int[n];
for(int i=0;i<n;i++){
if(obstacleGrid[0][i]==0) f[i]=1;
else{
for(int k=i;k<n;k++)
f[k]=0;
break;
}
}
for(int i=1;i<m;i++){
for(int j=0;j<n;j++){
if(j==0 ){
if(obstacleGrid[i][j]==1){
f[j]=0;
}
continue;
}
if(obstacleGrid[i][j]==1) f[j]=0;
else{
f[j]=f[j]+f[j-1];
}
}
}
return f[n-1];
}
}dfspublic class Solution {
public int [][]f;
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null || obstacleGrid[0][0]==1) return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
f=new int[m+1][n+1];
return dfs(m,n,obstacleGrid);
}
public int dfs(int m,int n,int[][] obstacleGrid){
if(m<1 || n<1 || obstacleGrid[m-1][n-1]==1) return 0;//
if(m==1 && n==1) return 1;//reach start point
return record(m-1,n,obstacleGrid)+record(m,n-1,obstacleGrid);//
}
public int record(int x,int y,int[][] obstacleGrid){
if(f[x][y]>0) return f[x][y];
else return f[x][y]=dfs(x,y,obstacleGrid);
}
}Unique Paths II,布布扣,bubuko.com
标签:算法
原文地址:http://blog.csdn.net/dutsoft/article/details/38638757