码迷,mamicode.com
首页 > 其他好文 > 详细

CodeForces 55D Beautiful numbers(数位dp+数学)

时间:2016-12-10 18:44:25      阅读:186      评论:0      收藏:0      [点我收藏+]

标签:for   type   dig   --   size   typedef   include   lag   区间   

题目链接:http://codeforces.com/problemset/problem/55/D

题意:一个美丽数就是可以被它的每一位的数字整除的数。

给定一个区间,求美丽数的个数。

显然这是一道数位dp,就是满足一个数能被所有位数的lcm整除即可。

一般都会设dp[len][mod][LCM],mod表示余数,LCM表示前len位的lcm。

但是如果直接裸mod会很复杂,于是再想lcm{0,1,2,3,4,5,6,7,8,9}=2520;

而且lcm{a,b,c,d....}{a,b,c,d...表示各个位数)去重之后能被lcm{0,1,2....9}

整除。我们要求的是sum%lcm(a,b,c,d..}==0,所以只要满足

sum%lcm(0,1,2,...9}%lcm(a,b,c,d..}==0即可。于是mod就可以表示为

sum%lcm(0,1,2,...9}为多少。但是mod<=2520 && LCM<=2520这样

肯定存不下,于是要考虑如何处理LCM,毕竟很明显0~9的最大公倍数种类不会

超过48个。于是可以考虑一下离散化一下LCM,

if 2520 % num == 0 -> LCM[num]=temp++;

这样dp的三维就可以设为dp[20][2520][48];

 

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
const int mmax = 2520;
ll n , m , dp[20][mmax][50];
int temp , dig[20] , LCM[mmax + 10];
ll gcd(ll a , ll b) {
    return b > 0 ? gcd(b , a % b) : a;
}
ll lcm(ll a , ll b) {
    return a / gcd(a , b) * b;
}
void init() {
    temp = 0;
    for(int i = 1 ; i <= mmax ; i++) {
        if(mmax % i == 0) {
            LCM[i] = temp++;
        }
        else {
            LCM[i] = 0;
        }
    }
}
ll dfs(int len , int count , int mod , int flag) {
    if(!len) {
        return mod % count == 0;
    }
    if(!flag && dp[len][mod][LCM[count]] != -1) {
        return dp[len][mod][LCM[count]];
    }
    int t = flag ? dig[len] : 9;
    ll sum = 0;
    for(int i = 0 ; i <= t ; i++) {
        int Nextmod = (mod * 10 + i) % mmax;
        int Nextcount;
        if(i == 0) {
            Nextcount = count;
        }
        else {
            Nextcount = (int)lcm(count , i);
        }
        sum += dfs(len - 1 , Nextcount , Nextmod , flag && i == t);
    }
    if(!flag)
        dp[len][mod][LCM[count]] = sum;
    return sum;
}
ll Gets(ll x) {
    memset(dig , 0 , sizeof(dig));
    int len = 0;
    if(x == 0) {
        dig[++len] = 0;
    }
    while(x) {
        dig[++len] = x % 10;
        x /= 10;
    }
    return dfs(len , 1 , 0 , 1);
}
int main() {
    int t;
    scanf("%d" , &t);
    init();
    memset(dp , -1 , sizeof(dp));
    while(t--) {
        scanf("%I64d%I64d" , &n , &m);
        printf("%I64d\n" , Gets(m) - Gets(n - 1));
    }
    return 0;
}

CodeForces 55D Beautiful numbers(数位dp+数学)

标签:for   type   dig   --   size   typedef   include   lag   区间   

原文地址:http://www.cnblogs.com/TnT2333333/p/6155962.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!