码迷,mamicode.com
首页 > 其他好文 > 详细

uva 684 - Integral Determinant(行列式求值)

时间:2014-08-18 01:35:03      阅读:250      评论:0      收藏:0      [点我收藏+]

标签:style   http   color   os   io   for   ar   cti   

题目连接:uva 684 - Integral Determinant

题目大意:给定一个行列式,求行列式的值。

解题思路:将行列式转化成上三角的形式,值即为对角线上元素的积。因为要消元,又是整数,所以用分数去写了。

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long type;

struct Fraction {
    type member; // 分子;
    type denominator; // 分母;

    Fraction (type member = 0, type denominator = 1);
    void operator = (type x) { this->set(x, 1); }
    Fraction operator * (const Fraction& u);
    Fraction operator / (const Fraction& u);
    Fraction operator + (const Fraction& u);
    Fraction operator - (const Fraction& u);

    void set(type member, type denominator);
};

inline type gcd (type a, type b) {
    return b == 0 ? (a > 0 ? a : -a) : gcd(b, a % b);
}

inline type lcm (type a, type b) {
    return a / gcd(a, b) * b;
}

/*Code*/
/////////////////////////////////////////////////////
const int maxn = 105;
typedef long long ll;

int N;
Fraction A[maxn][maxn];;

/*
bool cmp (const Fraction& a, const Fraction& b) {
    ll p = a.member * b.denominator;
    ll q = a.denominator * b.member;

    if (p < 0)
        p = -p;
    if (q < 0)
        q = -q;
    return p > q;
}
*/

inline void self_swap (Fraction& a, Fraction& b) {
    Fraction tmp = a;
    a = b;
    b = tmp;
}

ll solve () {
    int sign = 1;
    Fraction ret = 1;

    for (int i = 0; i < N; i++) {
//        printf("%d!\n", i);
        int r = i;

        for (int j = i+1; j < N; j++)
            if (A[j][i].member)
                r = j;

        if (r != i) {
            for (int j = 0; j < N; j++)
                self_swap(A[i][j], A[r][j]);
            sign *= -1;
        }

        if (A[i][i].member == 0 || A[i][i].denominator == 0)
            return 0;

        for (int j = i + 1; j < N; j++) {
            Fraction f = A[j][i] / A[i][i];

            for (int k = N-1; k >= 0; k--) {
                A[j][k] = A[j][k] - (A[i][k] * f);
            }
        }
        ret = ret * A[i][i];
    }

    /*
       for (int i = 0; i < N; i++) {
       for (int j = 0; j < N; j++)
       printf("%lld/%lld ", A[i][j].member, A[i][j].denominator);
       printf("\n");
       }
       */
    if (ret.denominator < 0)
        sign *= -1;
    return ret.member * sign;
}

int main () {
    while (scanf("%d", &N) == 1 && N) {
        ll x;
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                scanf("%lld", &x);
                A[i][j] = x;
            }
        }
        printf("%lld\n", solve());
    }
    printf("*\n");
    return 0;
}

/////////////////////////////////////////////////////

Fraction::Fraction (type member, type denominator) {
    this->set(member, denominator);
}

Fraction Fraction::operator * (const Fraction& u) {
    type tmp_p = gcd(member, u.denominator);
    type tmp_q = gcd(u.member, denominator);
    return Fraction( (member / tmp_p) * (u.member / tmp_q), (denominator / tmp_q) * (u.denominator / tmp_p) );
}

Fraction Fraction::operator / (const Fraction& u) {
    type tmp_p = gcd(member, u.member);
    type tmp_q = gcd(denominator, u.denominator);
    return Fraction( (member / tmp_p) * (u.denominator / tmp_q), (denominator / tmp_q) * (u.member / tmp_p));
}

Fraction Fraction::operator + (const Fraction& u) {
    type tmp_l = lcm (denominator, u.denominator);
    return Fraction(tmp_l / denominator * member + tmp_l / u.denominator * u.member, tmp_l);
}

Fraction Fraction::operator - (const Fraction& u) {
    type tmp_l = lcm (denominator, u.denominator);
    return Fraction(tmp_l / denominator * member - tmp_l / u.denominator * u.member, tmp_l);
}

void Fraction::set (type member, type denominator) {

    if (denominator == 0) {
        denominator = 1;
        member = 0;
    }

    type tmp_d = gcd(member, denominator);
    this->member = member / tmp_d;
    this->denominator = denominator / tmp_d;
}

uva 684 - Integral Determinant(行列式求值),布布扣,bubuko.com

uva 684 - Integral Determinant(行列式求值)

标签:style   http   color   os   io   for   ar   cti   

原文地址:http://blog.csdn.net/keshuai19940722/article/details/38648089

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!