发生了火警,所有人员需要紧急疏散!假设每个房间是一个N M的矩形区域。每个格子如果是‘.‘,那么表示这是一块空地;如果是‘X‘,那么表示这是一面墙,如果是‘D‘,那么表示这是一扇门,人们可以从这儿撤出房间。已知门一定在房间的边界上,并且边界上不会有空地。最初,每块空地上都有一个人,在疏散的时候,每一秒钟每个人都可以向上下左右四个方向移动一格,当然他也可以站着不动。疏散开始后,每块空地上就没有人数限制了(也就是说每块空地可以同时站无数个人)。但是,由于门很窄,每一秒钟只能有一个人移动到门的位置,一旦移动到门的位置,就表示他已经安全撤离了。现在的问题是:如果希望所有的人安全撤离,最短需要多少时间?或者告知根本不可能。
输入文件第一行是由空格隔开的一对正整数N与M,3<=N <=20,3<=M<=20,以下N行M列描述一个N M的矩阵。其中的元素可为字符‘.‘、‘X‘和‘D‘,且字符间无空格。
只有一个整数K,表示让所有人安全撤离的最短时间,如果不可能撤离,那么输出‘impossible‘(不包括引号)。
2015.1.12新加数据一组,鸣谢1756500824
C++语言请用scanf("%s",s)读入!
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <set>
//#include <map>
#include <string>
#include <algorithm>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
#define maxn 1000005
#define inf (0x3f3f3f3f)
int read()
{
int x=0,f=1; char ch=getchar();
while (ch<‘0‘||ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();}
while (ch>=‘0‘&&ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();}
return x*f;
}
int n,m,S,T;
char s[21];
int a[21][21]; // 0 X 1 . 2 D
int hs[21][21][201];
int mov[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
int fr[maxn],h[maxn],to[maxn],fl[maxn],en=0,ne[maxn];
void add(int a,int b,int r)
{
to[en]=b; fr[en]=a; fl[en]=r; ne[en]=h[a]; h[a]=en++;
to[en]=a; fr[en]=b; fl[en]=0; ne[en]=h[b]; h[b]=en++;
}
int map[maxn];
bool tell()
{
memset(map,-1,sizeof map);
queue <int> q;
while (!q.empty()) q.pop();
q.push(S); map[S]=0;
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=h[x];i>=0;i=ne[i])
{
if (fl[i]>0&&map[to[i]]==-1)
{
map[to[i]]=map[x]+1;
q.push(to[i]);
}
}
}
if (map[T]==-1) return false;
return true;
}
int zeng(int k,int now)
{
if (k==T) return now;
int ret=0;
for (int i=h[k];i>=0&&now>ret;i=ne[i])
{
if (fl[i]>0&&map[to[i]]==map[k]+1)
{
int tmp=zeng(to[i],min(fl[i],now-ret));
ret+=tmp; fl[i]-=tmp; fl[i^1]+=tmp;
}
}
if (!ret) map[k]=-1;
return ret;
}
void init()
{memset(h,-1,sizeof h);en=0;}
int dinic()
{
int r=0,t;
while (tell()) while (t=zeng(S,inf)) r+=t;
return r;
}
int sum=0,out=0;
int main()
{
n=read(); m=read();
for (int i=1;i<=n;++i)
{
scanf("%s",s+1);
for (int j=1;j<=m;++j)
{
if (s[j]==‘X‘) a[i][j]=0;
else if (s[j]==‘.‘) a[i][j]=1,sum++;
else if (s[j]==‘D‘) a[i][j]=2;
}
}
init();S=0; T=maxn-1;
int cnt=0;
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
for (int k=0;k<=200;++k)
hs[i][j][k]=++cnt;
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
if (a[i][j]==1)
add(S,hs[i][j][0],1);
for (int t=0;t<130;++t)
{
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j)
{
if (a[i][j]==1)
{
add(hs[i][j][t],hs[i][j][t+1],inf);
for (int l=0;l<4;++l)
{
int tx=i+mov[l][0],ty=j+mov[l][1];
if (tx<1||tx>n||ty<1||ty>m||a[tx][ty]==0) continue;
add(hs[i][j][t],hs[tx][ty][t+1],inf);
}
}
else if (a[i][j]==2)
{
add(hs[i][j][t],T,1);
add(hs[i][j][t],hs[i][j][t+1],inf);
}
}
out+=dinic();
if (out==sum)
{
printf("%d\n",t);
return 0;
}
}
printf("impossible\n");
}