Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
public class Solution { public int totalNQueens(int n) { Integer[] columns=new Integer[n]; return dfs(0,n,columns); } public int dfs(int row,int n,Integer[] columns){ if(row==n){ return 1; } int res=0; for(int col=0;col<n;col++){ if(isValid(columns,row,col)){ columns[row]=col; res+=dfs(row+1,n,columns); } } return res; } public boolean isValid(Integer[] columns,int row1,int col1){ for(int row2=0;row2<row1;row2++){ int col2=columns[row2]; if(col2==col1) return false; int colDistance=Math.abs(col1-col2); int rowDistance=row1-row2; if(colDistance==rowDistance) return false; } return true; } }
原文地址:http://blog.csdn.net/dutsoft/article/details/38656457