码迷,mamicode.com
首页 > 其他好文 > 详细

LR-逻辑回归

时间:2016-12-19 00:05:08      阅读:406      评论:0      收藏:0      [点我收藏+]

标签:基础   个性化   logistic   linear   analysis   似然函数   笔记   部分   ssi   

因为逻辑回归对于计算广告学非常重要。也是我们平时广告推荐、CTR预估最常用到的算法。所以单独开一篇文章讨论。

 

参考这篇文章:http://www.cnblogs.com/sparkwen/p/3441197.html

 

逻辑回归其实仅为在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,逻辑回归成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心

逻辑回归其实仅为在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,逻辑回归成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。

在业界,LR模型之所以很受欢迎,主要是因为LR模型本质是对数线性模型,实现简单,易于并行,大规模扩展方便,迭代速度快,同时使用的特征比较好解释,预测输出在0与1之间契合概率模型。但是,线性模型对于非线性关系缺乏准确刻画,特征组合正好可以加入非线性表达,增强模型的表达能力。另外,广告LR中,基本特征可以认为是用于全局建模,组合特征更加精细,是个性化建模,因为在这种大规模离散LR中,单对全局建模会对部分用户有偏,对每一用户建模又数据不足易过拟合同时带来模型数量爆炸,所以基本特征+组合特征兼顾了全局和个性化。

 

以下是《机器学习》-周志华的读书笔记:

P54

技术分享

 

P58 广义线性回归

技术分享

 

 

P58 终于讲到逻辑回归了。其实是Logistic Regression。所以这本书坚持翻译成对率回归。迂腐。让人差点看不懂。

技术分享

 

优点:

技术分享

解法:

技术分享

 

 关于似然函数,有如下解释:

统计学中,似然函数(Likelihood function),或简称似然,是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ).似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变量的输出结果;似然则用来描述已知随机变量输出结果时,未知参数的可能取值。例如,对于“一枚正反对称的硬币上抛十次”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对于“一枚硬币上抛十次,落地都是正面向上”这种事件,我们则可以问,这枚硬币正反面对称的“似然”程度是多少。

 

P60 3.4 线性判别分析(Linear Discriminant Analysis, LDA) 

 

因为 LR 对计算广告学极为重要。还要补充。

 

LR-逻辑回归

标签:基础   个性化   logistic   linear   analysis   似然函数   笔记   部分   ssi   

原文地址:http://www.cnblogs.com/charlesblc/p/6195795.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!