标签:垃圾回收 requests 博士 能力 硬件 重新编译 缺陷 垃圾回收器 soc
转载:http://superhj1987.github.com
互联网时代,高并发是一个老生常谈的话题。无论对于一个web站点还是app应用,高峰时能承载的并发请求都是衡量一个系统性能的关键标志。像阿里双十一顶住了上亿的峰值请求、订单也确实体现了阿里的技术水平(当然有钱也是一个原因)。
那么,何为系统负载能力?怎么衡量?相关因素有哪些?又如何优化呢?
用什么来衡量一个系统的负载能力呢?有一个概念叫做每秒请求数(Requests per second),指的是每秒能够成功处理请求的数目。比如说,你可以配置tomcat服务器的maxConnection为无限大,但是受限于服务器系统或者硬件限制,很多请求是不会在一定的时间内得到响应的,这并不作为一个成功的请求,其中成功得到响应的请求数即为每秒请求数,反应出系统的负载能力。
通常的,对于一个系统,增加并发用户数量时每秒请求数量也会增加。然而,我们最终会达到这样一个点,此时并发用户数量开始“压倒”服务器。如果继续增加并发用户数量,每秒请求数量开始下降,而反应时间则会增加。这个并发用户数量开始“压倒”服务器的临界点非常重要,此时的并发用户数量可以认为是当前系统的最大负载能力。
一般的,和系统并发访问量相关的几个因素如下:
其中,带宽和硬件配置是决定系统负载能力的决定性因素。这些只能依靠扩展和升级提高。我们需要重点关注的是在一定带宽和硬件配置的基础上,怎么使系统的负载能力达到最大。
毋庸置疑,带宽是决定系统负载能力的一个至关重要的因素,就好比水管一样,细的水管同一时间通过的水量自然就少(这个比喻解释带宽可能不是特别合适)。一个系统的带宽首先就决定了这个系统的负载能力,其单位为Mbps,表示数据的发送速度。
系统部署所在的服务器的硬件决定了一个系统的最大负载能力,也是上限。一般说来,以下几个配置起着关键作用:
很多系统的架构设计、系统优化,最终都会加上这么一句:使用ssd存储解决了这些问题。
可见,硬件配置是决定一个系统的负载能力的最关键因素。
一般来说,目前后端系统都是部署在Linux主机上的。所以抛开win系列不谈,对于Linux系统来说一般有以下配置关系着系统的负载能力。
系统最大打开文件描述符数:/proc/sys/fs/file-max中保存了这个数目,修改此值
临时性
echo 1000000 > /proc/sys/fs/file-max
永久性:在/etc/sysctl.conf中设置
fs.file-max = 1000000
进程最大打开文件描述符数:这个是配单个进程能够打开的最大文件数目。可以通过ulimit -n查看/修改。如果想要永久修改,则需要修改/etc/security/limits.conf中的nofile。
通过读取/proc/sys/fs/file-nr可以看到当前使用的文件描述符总数。另外,对于文件描述符的配置,需要注意以下几点:
线程数限制
在一台服务器CPU和内存资源额定有限的情况下,最大的压榨服务器的性能,是最终的目的。在节省成本的情况下,可以考虑修改Linux的内核TCP/IP参数,来最大的压榨服务器的性能。如果通过修改内核参数也无法解决的负载问题,也只能考虑升级服务器了,这是硬件所限,没有办法的事。
netstat -n | awk ‘/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}‘
使用上面的命令,可以得到当前系统的各个状态的网络连接的数目。如下:
LAST_ACK 13
SYN_RECV 468
ESTABLISHED 90
FIN_WAIT1 259
FIN_WAIT2 40
CLOSING 34
TIME_WAIT 28322
这里,TIME_WAIT的连接数是需要注意的一点。此值过高会占用大量连接,影响系统的负载能力。需要调整参数,以尽快的释放time_wait连接。
一般tcp相关的内核参数在/etc/sysctl.conf文件中。为了能够尽快释放time_wait状态的连接,可以做以下配置:
这里需要注意的一点就是当打开了tcp_tw_recycle,就会检查时间戳,移动环境下的发来的包的时间戳有些时候是乱跳的,会把带了“倒退”的时间戳的包当作是“recycle的tw连接的重传数据,不是新的请求”,于是丢掉不回包,造成大量丢包。另外,当前面有LVS,并且采用的是NAT机制时,开启tcp_tw_recycle会造成一些异常,可见:http://www.pagefault.info/?p=416。如果这种情况下仍然需要开启此选项,那么可以考虑设置net.ipv4.tcp_timestamps=0,忽略掉报文的时间戳即可。
此外,还可以通过优化tcp/ip的可使用端口的范围,进一步提升负载能力。,如下:
说到应用服务器配置,这里需要提到应用服务器的几种工作模式,也叫并发策略。
前三者是传统应用服务器apache和tomcat采用的方式,最后一种是nginx采用的方式。当然这里需要注意的是应用服务器和nginx这种做反向代理服务器(暂且忽略nginx+cgi做应用服务器的功能)的区别。应用服务器是需要处理应用逻辑的,有时候是耗cup资源的;而反向代理主要用作IO,是IO密集型的应用。使用事件驱动的这种网络模型,比较适合IO密集型应用,而并不适合CPU密集型应用。对于后者,多进程/线程则是一个更好地选择。
当然,由于nginx采用的基于事件驱动的多路IO复用的模型,其作为反向代理服务器时,可支持的并发是非常大的。淘宝tengine团队曾有一个测试结果是“24G内存机器上,处理并发请求可达200万”。
ngixn是目前使用最广泛的反向代理软件,而tengine是阿里开源的一个加强版nginx,其基本实现了nginx收费版本的一些功能,如:主动健康检查、session sticky等。对于nginx的配置,需要注意的有这么几点:
典型配置可见:https://github.com/superhj1987/awesome-config/blob/master/nginx/nginx.conf
tomcat的关键配置总体上有两大块:jvm参数配置和connector参数配置。
jvm参数配置:
这里对于栈大小有一点需要注意的是:在Linux x64上ThreadStackSize的默认值就是1024KB,给Java线程创建栈会用这个参数指定的大小。如果把-Xss或者-XX:ThreadStackSize设为0,就是使用“系统默认值”。而在Linux x64上HotSpot VM给Java栈定义的“系统默认”大小也是1MB。所以普通Java线程的默认栈大小怎样都是1MB。这里有一个需要注意的地方就是java的栈大小和之前提到过的操作系统的操作系统栈大小(ulimit -s):这个配置只影响进程的初始线程;后续用pthread_create创建的线程都可以指定栈大小。HotSpot VM为了能精确控制Java线程的栈大小,特意不使用进程的初始线程(primordial thread)作为Java线程。
其他还要根据业务场景,选择使用那种垃圾回收器,回收的策略。另外,当需要保留GC信息时,也需要做一些设置。
典型配置可见:https://github.com/superhj1987/awesome-config/blob/master/tomcat/java_opts.conf
connector参数配置
典型配置可见:https://github.com/superhj1987/awesome-config/blob/master/tomcat/connector.conf
一般的当一个进程有500个线程在跑的话,那性能已经是很低很低了。Tomcat默认配置的最大请求数是150。当某个应用拥有250个以上并发的时候,应考虑应用服务器的集群。
另外,并非是无限调大maxTreads和maxConnection就能无限调高并发能力的。线程越多,那么cpu花费在线程调度上的时间越多,同时,内存消耗也就越大,那么就极大影响处理用户的请求。受限于硬件资源,并发值是需要设置合适的值的。
对于tomcat这里有一个争论就是:使用大内存tomcat好还是多个小的tomcat集群好?(针对64位服务器以及tomcat来说)
其实,这个要根据业务场景区别对待的。通常,大内存tomcat有以下问题:
因此,如果可以保证一定程度上程序的对象大部分都是朝生夕死的,老年代不会发生gc,那么使用大内存tomcat也是可以的。但是在伸缩性和高可用却比不上使用小内存(相对来说)tomcat集群。
使用小内存tomcat集群则有以下优势:
mysql是目前最常用的关系型数据库,支持复杂的查询。但是其负载能力一般,很多时候一个系统的瓶颈就发生在mysql这一点,当然有时候也和sql语句的效率有关。比如,牵扯到联表的查询一般说来效率是不会太高的。
影响数据库性能的因素一般有以下几点:
抛开以上因素,当数据量单表突破千万甚至百万时(和具体的数据有关),需要对mysql数据库进行优化,一种常见的方案就是分表:
此外,对于数据库,可以使用读写分离的方式提高性能,尤其是对那种读频率远大于写频率的业务场景。这里一般采用master/slave的方式实现读写分离,前面用程序控制或者加一个proxy层。可以选择使用MySQL Proxy,编写lua脚本来实现基于proxy的mysql读写分离;也可以通过程序来控制,根据不同的sql语句选择相应的数据库来操作,这个也是笔者公司目前在用的方案。由于此方案和业务强绑定,是很难有一个通用的方案的,其中比较成熟的是阿里的TDDL,但是由于未全部开源且对其他组件有依赖性,不推荐使用。
现在很多大的公司对这些分表、主从分离、分布式都基于mysql做了自己的二次开发,形成了自己公司的一套分布式数据库系统。比如阿里的Cobar、网易的DDB、360的Atlas等。当然,很多大公司也研发了自己的mysql分支,比较出名的就是姜承尧带领研发的InnoSQL。
当然,对于系统中并发很高并且访问很频繁的数据,关系型数据库还是不能妥妥应对。这时候就需要缓存数据库出马以隔离对mysql的访问,防止mysql崩溃。
其中,redis是目前用的比较多的缓存数据库(当然,也有直接把redis当做数据库使用的)。redis是单线程基于内存的数据库,读写性能远远超过mysql。一般情况下,对redis做读写分离主从同步就可以应对大部分场景的应用。但是这样的方案缺少ha,尤其对于分布式应用,是不可接受的。目前,redis集群的实现方案有以下几个:
影响性能的系统架构一般会有这几方面:
负载均衡在服务端领域中是一个很关键的技术。可以分为以下两种:
其中,硬件负载均衡的性能无疑是最优的,其中以F5为代表。但是,与高性能并存的是其成本的昂贵。所以对于很多初创公司来说,一般是选用软件负载均衡的方案。
软件负载均衡中又可以分为四层负载均衡和七层负载均衡。 上文在应用服务器配置部分讲了nginx的反向代理功能即七层的一种成熟解决方案,主要针对的是七层http协议(虽然最新的发布版本已经支持四层负载均衡)。对于四层负载均衡,目前应用最广泛的是lvs。其是阿里的章文嵩博士带领的团队所研发的一款linux下的负载均衡软件,本质上是基于iptables实现的。分为三种工作模式:
三种模式各有优缺点,目前还有阿里开源的一个FULL NAT是在NAT原来的DNAT上加入了SNAT的功能。
此外,haproxy也是一款常用的负载均衡软件。但限于对此使用较少,在此不做讲述。
对于一个系统,很多业务需要面对使用同步机制或者是异步机制的选择。比如,对于一篇帖子,一个用户对其分享后,需要记录用户的分享记录。如果你使用同步模式(分享的同时记录此行为),那么响应速度肯定会受到影响。而如果你考虑到分享过后,用户并不会立刻去查看自己的分享记录,牺牲这一点时效性,可以先完成分享的动作,然后异步记录此行为,会提高分享请求的响应速度(当然,这里可能会有事务准确性的问题)。有时候在某些业务逻辑上,在充分理解用户诉求的基础上,是可以牺牲某些特性来满足用户需求的。
这里值得一提的是,很多时候对于一个业务流程,是可以拆开划分为几个步骤的,然后有些步骤完全可以异步并发执行,能够极大提高处理速度。
对于一个系统,20%的功能会带来80%的流量。这就是28原则的意思,当然也是我自己的一种表述。因此在设计系统的时候,对于80%的功能,其面对的请求压力是很小的,是没有必要进行过度设计的。但是对于另外20%的功能则是需要设计再设计、reivew再review,能够做负载均衡就做负载均衡,能够缓存就缓存,能够做分布式就分布式,能够把流程拆开异步化就异步化。
当然,这个原则适用于生活中很多事物。
一般的Java后端系统应用架构如下图所示:LVS+Nginx+Tomcat+MySql/DDB+Redis/Codis
其中,虚线部分是数据库层,采用的是主从模式。也可以使用redis cluster(codis等)以及mysql cluster(Cobar等)来替换。
标签:垃圾回收 requests 博士 能力 硬件 重新编译 缺陷 垃圾回收器 soc
原文地址:http://www.cnblogs.com/zhangyaxiao/p/6196903.html