码迷,mamicode.com
首页 > 其他好文 > 详细

Spark的DataFrame的窗口函数使用

时间:2016-12-20 20:00:40      阅读:2515      评论:0      收藏:0      [点我收藏+]

标签:htm   idt   result   top   错误   context   资料   select   修改   

作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处

SparkSQL这块儿从1.4开始支持了很多的窗口分析函数,像row_number这些,平时写程序加载数据后用SQLContext 能够很方便实现很多分析和查询,如下

val sqlContext = new SQLContext(sc)

sqlContext.sql(“select ….”)

然而我看到Spark2.0的DataFrame功能很强大,想试试使用这种方式来实现比如row_number这种功能,话不多说,快速用pyspark测试一下,记录一下遇到的问题.

from pyspark.sql import Row, functions as F
from pyspark.sql.window import Window
from pyspark import SparkContext
sc = SparkContext("local[3]", "test data frame on 2.0")
testDF = sc.parallelize( (Row(c="class1", s=50), Row(c="class2", s=40), Row(c="class3", s=70), Row(c="class2", s=49), Row(c="class3", s=29), Row(c="class1", s=78) )).toDF()
(testDF.select("c", "s", F.rowNumber().over(Window.partitionBy("c").orderBy("s")).alias("rowNum") ).show())
 
spark-submit提交任务后直接报错如下
技术分享

告诉我RDD没有toDF()属性,查阅spark官方文档得知还是需要用SQLContext或者sparkSession来初始化一下,先考虑用SQLContext吧,修改代码如下

from pyspark.sql import Row, functions as F
from pyspark.sql.window import Window
from pyspark import SparkContext
from pyspark.sql import SQLContext
sc = SparkContext("local[3]", "test data frame on 2.0")
rddData = sc.parallelize( (Row(c="class1", s=50), Row(c="class2", s=40), Row(c="class3", s=70), Row(c="class2", s=49), Row(c="class3", s=29), Row(c="class1", s=78)))
sqlContext = SQLContext(sc)
testDF = rddData.toDF()
(testDF.select("c", "s", F.rowNumber().over(Window.partitionBy("c").orderBy("s")).alias("rowNum") ).show())

spark-submit提交任务后接着报另外一个错,如下

技术分享

ok,错误很清楚,rowNumber这里我写错了,没有这个函数,查阅spark源码中的functions.py,会发现如下说明

技术分享

这里说了,rowNumber从1.6开始,用row_number代替,直接修改py脚本如下

from pyspark.sql import Row, functions as F
from pyspark.sql.window import Window
from pyspark import SparkContext
from pyspark.sql import SQLContext
sc = SparkContext("local[3]", "test data frame on 2.0")
rddData = sc.parallelize( (Row(c="class1", s=50), Row(c="class2", s=40), Row(c="class3", s=70), Row(c="class2", s=49), Row(c="class3", s=29), Row(c="class1", s=78)))
sqlContext = SQLContext(sc)
testDF = rddData.toDF()
(testDF.select("c", "s", F.row_number().over(Window.partitionBy("c").orderBy("s")).alias("rowNum") ).show())

这次运行没问题,结果如下

技术分享

但是我只想取每组rowNum为1的那个,代码如下

from pyspark.sql import Row, functions as F
from pyspark.sql.window import Window
from pyspark import SparkContext
from pyspark.sql import SQLContext
sc = SparkContext("local[3]", "test data frame on 2.0")
rddData = sc.parallelize( (Row(c="class1", s=50), Row(c="class2", s=40), Row(c="class3", s=70), Row(c="class2", s=49), Row(c="class3", s=29), Row(c="class1", s=78)))
sqlContext = SQLContext(sc)
testDF = rddData.toDF()
result = (testDF.select("c", "s", F.row_number().over(Window.partitionBy("c").orderBy("s")).alias("rowNum")))
finalResult = result.where(result.rowNum <= 1).show()

可以看到,sql能实现的DataFrame的函数都可以实现,毕竟DataFrame是基于row和column的,就是写起来麻烦点.

参考资料:http://spark.apache.org/docs/1.3.1/api/python/pyspark.sql.html

Spark的DataFrame的窗口函数使用

标签:htm   idt   result   top   错误   context   资料   select   修改   

原文地址:http://www.cnblogs.com/cssdongl/p/6203726.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!