标签:hive impala hadoop 大数据 大数据培训
Impala 与Hive都是构建在Hadoop之上的数据查询工具,但是各有不同侧重,那么我们为什么要同时使用这两个工具呢?单独使用Hive或者Impala不可以吗?
一、介绍Impala和Hive
(1)Impala和Hive都是提供对HDFS/Hbase数据进行SQL查询的工具,Hive会转换成MapReduce,借助于YARN进行调度从而实现对HDFS的数据的访问,而Impala直接对HDFS进行数据查询。但是他们都是提供如下的标准SQL语句,在机身里运行。
(2)Apache Hive是MapReduce的高级抽象,使用HiveQL,Hive可以生成运行在Hadoop集群的MapReduce或Spark作业。Hive最初由Facebook大约在2007年开发,现在是Apache的开源项目。
Apache Impala是高性能的专用SQL引擎,使用Impala SQL,因为Impala无需借助任何的框架,直接实现对数据块的查询,所以查询延迟毫秒级。Impala受到Google的Dremel项目启发,2012年由Cloudera开发,现在是Apache开源项目。
二、Impala和Hive有什么不同?
(1)Hive有很多的特性:
1、对复杂数据类型(比如arrays和maps)和窗口分析更广泛的支持
2、高扩展性
3、通常用于批处理
(2)Impala更快
1、专业的SQL引擎,提供了5x到50x更好的性能
2、理想的交互式查询和数据分析工具
3、更多的特性正在添加进来
三、高级概述:
四、为什么要使用Hive和Impala?
1、为数据分析人员带来了海量数据分析能力,不需要软件开发经验,运用已掌握的SQL知识进行数据的分析。
2、比直接写MapReduce或Spark具有更好的生产力,5行HiveQL/Impala SQL等同于200行或更多的Java代码。
3、提供了与其他系统良好的互操作性,比如通过Java和外部脚本扩展,而且很多商业智能工具支持Hive和Impala。
五、Hive和Impala使用案例
(1)日志文件分析
日志是普遍的数据类型,是当下大数据时代重要的数据源,结构不固定,可以通过Flume和kafka将日志采集放到HDFS,然后分析日志的结构,根据日志的分隔符去建立一个表,接下来运用Hive和Impala 进行数据的分析。例如:
(2)情感分析
很多组织使用Hive或Impala来分析社交媒体覆盖情况。例如:
(3)商业智能
很多领先的BI工具支持Hive和Impala
看了Hive和Impala的作用及功效阐述,对于掌握Hadoop数据处理有着重要作用。大家在平常要多去积累和总结经验,不断提升技能水平。我自己平时除了总结自己的经验教训,还喜欢看别人分享的知识,取长补短,对于完善自己的知识架构有着重要作用。像“CSDN”论坛,“大数据cn”,“大数据时代学习中心”微信服务号都挺不错,总之,努力汲取多方面知识,我们就会取得更大进步!
本文出自 “11872756” 博客,请务必保留此出处http://11882756.blog.51cto.com/11872756/1884300
标签:hive impala hadoop 大数据 大数据培训
原文地址:http://11882756.blog.51cto.com/11872756/1884300