标签:ace lin limit dimen adt 像素 caff 网络 cti
一、物体分类:
这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~
首先导入一些必要的库:
import caffe
import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams[‘figure.figsize‘] = (10 , 10) #显示图像的最大范围,使用plt.rcParams[‘savefig.dpi‘]得到缺省的dpi值为100,则最大的图片范围为1000*1000 plt.rcParams[‘image.interpolation‘] = ‘nearest‘ #差值方式 plt.rcParams[‘image.cmap‘] = ‘gray‘ #灰度空间,表明显示图像时是灰度图而不是彩色图 import sys caffe_root = ‘E:\\caffe\\caffe-master\\‘ sys.path.insert(0 , caffe_root + ‘python‘)
import os
caffe.set_mode_cpu() #CPU模式
model_def = caffe_root + ‘models/bvlc_reference_caffenet/deploy.prototxt‘ #加载配置文件 model_weights = caffe_root + ‘models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel‘ #加载模型文件 net = caffe.Net(model_def , model_weights , caffe.TEST) #用caffe的测试模式,即只是提取特征,不训练
#预处理函数 #caffe中用的图像是BGR空间,但是matplotlib用的是RGB空间;再比如caffe的数值空间是[0,255],但是matplotlib的空间是[0,1],这些都需要转换 #载入imagenet的均值,实际图像要减去这个均值,从而减少噪声影响(同时还有特征缩放的作用?) mu = np.load(caffe_root + ‘python/caffe/imagenet/ilsvrc_2012_mean.npy‘) mu = mu.mean(1).mean(1) #计算像素的平均值(mean(1)按每行计算均值) print ‘mean-subtracted values:‘ , zip(‘BGR‘ , mu) #打印B、G、R的平均像素值
transformer = caffe.io.Transformer({‘data‘ : net.blobs[‘data‘].data.shape}) #用转换函数Transformer函数使transformer得到data层的数据格式 transformer.set_transpose(‘data‘ , (2 , 0 , 1)) #由于python中读取的图片格式为H*W*K,所以需要转换为caffe的格式即K*H*W transformer.set_mean(‘data‘ , mu) #每个通道都减去平均像素值 transformer.set_raw_scale(‘data‘ , 255) #python 中将图片存储为[0,1],而caffe中将图片存储为[0,255],而这里是Python空间,所以将[0,1]转换为[0,255] transformer.set_channel_swap(‘data‘ , (2 , 1 , 0)) #交换RGB空间到BGR空间
net.blobs[‘data‘].reshape(50 , 3 , 227 , 227) #batchsize=50,3通道,图像大小为227*227
image = caffe.io.load_image(caffe_root + ‘examples/images/cat.jpg‘) transformed_image = transformer.preprocess(‘data‘ , image) #执行上面的图像预处理操作,并将image载入到blob中,和下面语句一起的 plt.imshow(image) #显示图片
net.blobs[‘data‘].data[...] = transformed_image
output = net.forward() #进行一次前向传播 output_prob = output[‘prob‘][0] #output_prob存储属于每类的概率,[‘prob‘][0],它是一个一维数组 ‘‘‘ layer { name: "prob" type: "Softmax" bottom: "fc8" top: "prob" } ‘‘‘ print ‘predicted class is:‘ , output_prob.argmax() #最大概率所在的类别
out:predicted class is: 281
labels_file = caffe_root + ‘data/ilsvrc12/synset_words.txt‘ labels = np.loadtxt(labels_file , str , delimiter = ‘\t‘) #一行一行读取到labels中,定界符delimiter是\t print ‘output label:‘ , labels[output_prob.argmax()]
out:
output label: n02123045 tabby, tabby cat
#输出概率较大的前5个物体 top_inds = output_prob.argsort()[: : -1][: 5] #得到数组值从小到大的索引值后再从右向左进行提取,并取前5个即概率最大的5个物体 print ‘probabilities and labels:‘ zip(output_prob[top_inds] , labels[top_inds])
out:
import caffe
%matplotlib inline import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook #import Image import sys import os from math import pow from PIL import Image, ImageDraw, ImageFont import cv2 import math import random caffe_root = ‘E:\\caffe\\caffe-master\\‘ sys.path.insert(0, caffe_root + ‘python‘) os.environ[‘GLOG_minloglevel‘] = ‘2‘ caffe.set_mode_cpu()
#非极大值抑制算法NMS class Point(object): def __init__(self, x, y): self.x = x self.y = y def calculateDistance(x1,y1,x2,y2): #计算人脸框的对角线距离 dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) return dist def range_overlap(a_min, a_max, b_min, b_max): return (a_min <= b_max) and (b_min <= a_max) def rect_overlaps(r1,r2): return range_overlap(r1.left, r1.right, r2.left, r2.right) and range_overlap(r1.bottom, r1.top, r2.bottom, r2.top) def rect_merge(r1,r2, mergeThresh): if rect_overlaps(r1,r2): # dist = calculateDistance((r1.left + r1.right)/2, (r1.top + r1.bottom)/2, (r2.left + r2.right)/2, (r2.top + r2.bottom)/2) SI= abs(min(r1.right, r2.right) - max(r1.left, r2.left)) * abs(max(r1.bottom, r2.bottom) - min(r1.top, r2.top)) SA = abs(r1.right - r1.left)*abs(r1.bottom - r1.top) SB = abs(r2.right - r2.left)*abs(r2.bottom - r2.top) S=SA+SB-SI ratio = float(SI) / float(S) if ratio > mergeThresh : return 1 return 0 class Rect(object): def __init__(self, p1, p2): #p1和p2为对角线上的两个点 ‘‘‘Store the top, bottom, left and right values for points p1 and p2 are the (corners) in either order ‘‘‘ self.left = min(p1.x, p2.x) #????? self.right = max(p1.x, p2.x) self.bottom = min(p1.y, p2.y) self.top = max(p1.y, p2.y) def __str__(self): return "Rect[%d, %d, %d, %d]" % ( self.left, self.top, self.right, self.bottom ) def nms_average(boxes, groupThresh=2, overlapThresh=0.2): rects = [] temp_boxes = [] weightslist = [] new_rects = [] for i in range(len(boxes)): if boxes[i][4] > 0.2: rects.append([boxes[i,0], boxes[i,1], boxes[i,2]-boxes[i,0], boxes[i,3]-boxes[i,1]]) rects, weights = cv2.groupRectangles(rects, groupThresh, overlapThresh) #函数解释http://blog.csdn.net/nongfu_spring/article/details/38977833 rectangles = [] for i in range(len(rects)): testRect = Rect( Point(rects[i,0], rects[i,1]), Point(rects[i,0]+rects[i,2], rects[i,1]+rects[i,3])) rectangles.append(testRect) clusters = [] for rect in rectangles: matched = 0 for cluster in clusters: if (rect_merge( rect, cluster , 0.2) ): matched=1 cluster.left = (cluster.left + rect.left )/2 cluster.right = ( cluster.right+ rect.right )/2 cluster.top = ( cluster.top+ rect.top )/2 cluster.bottom = ( cluster.bottom+ rect.bottom )/2 if ( not matched ): clusters.append( rect ) result_boxes = [] for i in range(len(clusters)): result_boxes.append([clusters[i].left, clusters[i].bottom, clusters[i].right, clusters[i].top, 1]) return result_boxes
def generateBoundingBox(featureMap, scale): #由于做了scale变换,所以在这里还要将坐标反变换回去 boundingBox = [] #存储候选框,以及属于人脸的概率 stride = 32 #感受野的大小,filter大小,这个需要自己不断地去调整; cellSize = 227 #人脸框的大小,它这里是认为特征图上的一块区域的prob大于95%,就以那个点在原始图像中相应的位置作为人脸框的左上角点,然后框出候选框,但这么做感觉会使候选框变多 #遍历最终的特征图,寻找属于人脸的概率大于95%的那些区域,加上Box for (x,y), prob in np.ndenumerate(featureMap): if(prob >= 0.95): boundingBox.append([float(stride * y)/ scale, float(x * stride)/scale, float(stride * y + cellSize - 1)/scale, float(stride * x + cellSize - 1)/scale, prob]) return boundingBox
def face_detection(imgFile): net_full_conv = caffe.Net(os.path.join(caffe_root, ‘faceDetect‘, ‘deploy_full_conv.prototxt‘), os.path.join(caffe_root, ‘faceDetect‘, ‘alexnet_iter_50000_full_conv.caffemodel‘), caffe.TEST)#全卷积网络(导入训练好的模型和deploy配置文件) randNum = random.randint(1,10000) #设置一个在1到10000之间的随机数 scales = [] #设置几个scale,组成图像金字塔 factor = 0.793700526 #图像放大或者缩小的一个因子(经验值) img = cv2.imread(imgFile) #读入测试图像 largest = min(2, 4000/max(img.shape[0:2])) #设定做scale变幻时最大的scale scale = largest minD = largest*min(img.shape[0:2]) #设定最小的scale while minD >= 227: #只要最小的边做完最大的scale变换后大于227,之前得到的largest就可以作为最大的scale来用,并依此乘上factor,加入到scale列表中 scales.append(scale) scale *= factor minD *= factor total_boxes = [] #存储所有的候选框 #进行多尺度的人脸检测 for scale in scales: scale_img = cv2.resize(img,((int(img.shape[0] * scale), int(img.shape[1] * scale)))) #调整图像的长和高 cv2.imwrite(‘E:\\caffe\\caffe-master\\faceDetect\\scale\\scale_img.jpg‘,scale_img) #保存图像 #图像预处理 im = caffe.io.load_image(‘E:\\caffe\\caffe-master\\faceDetect\\scale\\scale_img.jpg‘) #得到的特征值是0到1之间的小数 net_full_conv.blobs[‘data‘].reshape(1,3,scale_img.shape[1],scale_img.shape[0]) #blobs[‘data‘]指data层,字典用法;同时由于图像大小发生了变化,data层的输入接口也要发生相应的变化 transformer = caffe.io.Transformer({‘data‘: net_full_conv.blobs[‘data‘].data.shape}) #设定图像的shape格式 transformer.set_mean(‘data‘, np.load(caffe_root + ‘python\\caffe\\imagenet\\ilsvrc_2012_mean.npy‘).mean(1).mean(1)) #减去均值操作 transformer.set_transpose(‘data‘, (2,0,1)) #move image channels to outermost dimension transformer.set_channel_swap(‘data‘, (2,1,0)) #swap channels from RGB to BGR transformer.set_raw_scale(‘data‘, 255.0) #rescale from [0,1] to [0,255] out = net_full_conv.forward_all(data=np.asarray([transformer.preprocess(‘data‘, im)])) #进行一次前向传播,out包括所有经过每一层后的特征图,其中元素为[(x,y),prob](特征图中的每一个小区域都代表一个概率) boxes = generateBoundingBox(out[‘prob‘][0,1], scale) #输出两类的可能性,并经过筛选获得候选框 if(boxes): total_boxes.extend(boxes) #将每次scale变换后的图片得到的候选框存进total_boxes中 boxes_nms = np.array(total_boxes) true_boxes = nms_average(boxes_nms, 1, 0.2) #利用非极大值算法过滤出人脸概率最大的框 if not true_boxes == []: (x1, y1, x2, y2) = true_boxes[0][:-1] print (x1, y1, x2, y2) cv2.rectangle(img, (int(x1),int(y1)), (int(x2),int(y2)), (0,0,255),thickness = 5) cv2.imwrite(‘E:\\caffe\\caffe-master\\faceDetect\\scale\\result.jpg‘,img)
imgFile = ‘E:\\caffe\\caffe-master\\data\\imageset_2\\tangyudi\\tmp9055.jpg‘ #image_file = cbook.get_sample_data(imgFile) img = plt.imread(imgFile) plt.imshow(img) plt.show() #face_detection(imgFile)
face_detection(imgFile)
out:
(581, 147, 818, 384)
imgFile = ‘E:\\caffe\\caffe-master\\faceDetect\\scale\\result.jpg‘ img = plt.imread(imgFile) plt.imshow(img) plt.show()
标签:ace lin limit dimen adt 像素 caff 网络 cti
原文地址:http://www.cnblogs.com/zf-blog/p/6210521.html