标签:mic mil text orm 复杂度 man ros 意思 不同
作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的;
优化?我们看一下这个递推式子核心就是f(i,j) = max(f(i – 1, j) , f(i-1,j - wi) + vi), 看一下f(i,*)只与f(i-1,*)相关,再仔细看看我们的第维j,只和更小的值相关,我们可以省掉一维i,然后倒着循环j,用旧的值更新新的值,这时f一部分是旧的值f(i-1,*),一部分是新的值f(i,*)。更具体地说小于j地是旧值,其余是新值。
核心伪代码:
f(0) = 0 f(1..m) = -∞ for i = 1 to n do for j = m downto wi do f(j) = max(f(j), f(j - wi)) endfor endfor
所求结果是max{f(0..m)}
注意我们循环j只到wi,因为再小的j会导致我们无法选择第i件物品,这时我们直接使用不用第i件物品的旧值就好啦。简单吧?
那么现在,时间复杂度时不变的,空间复杂度降低O(m)了。
们尝试换一种状态表示? 我们令f(i,j)表示决定了前i件物品,总重量不超过j时能获得的最大价值。仔细想想递推式是不变的,那么初值呢?如果初值不变,f就没变化了……i= 0时,总重量时0,又因为0不超过任何整数,所以根据定义初值是f(0,*) = 0
那么最终结果呢?根据定义,最终结果是f(n,m)而没有必要再一串数里取最大了。可见即使递推式相同,初值不同也会定义不同的函数,请不要忽略初值的作用啊。同样我们可以优化掉第一维。
核心伪代码:
初值f(0..m) = 0 for i = 1 to n do for j = m downto wi do f(j) = max(f(j), f(j - wi)) endfor endfor
所求结果是f(m)
再换一种状态表示?刚才讲了,我们有重量和价值两个指标,那么我们令f(i,j)是决定了前i件物品,总价值恰好是j时的最小重量,那么经过类似的分析,我们可以写出这样的初值和递推式:
{0(i=0∩j=0)
f(i,j)= {∞(i=0∩j>0)
{f(i−1,j)(i>0∪j<vi)
{max(f(i−1,j),f(i−1,j−wi)+vi)(i>0∪j>vi)
那结果是什么呢?
根据定义结果是max{x| f(n, x) <= m}, 同样我们可以优化掉一维的空间复杂度。那么时间复杂度是什么呢? O(n * sum(vi)) sum(vi)表示所有vi的和,也是第二维有意义的大小。
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
输出可以容纳的最大价值。
3 6
2 5
3 8
4 9
14
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,w[10000],d[10000],m,f[13000]; int main() { cin>>n>>m; for(int i=1;i<=n;i++) cin>>w[i]>>d[i]; for(int i=1;i<=n;i++) for(int j=m;j>=w[i];j--) f[j]=max(f[j],f[j-w[i]]+d[i]); cout<<f[m]; }
标签:mic mil text orm 复杂度 man ros 意思 不同
原文地址:http://www.cnblogs.com/cangT-Tlan/p/6217934.html