标签:algorithm stream class cst nat scan contain command 顺序
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 36916 | Accepted: 14904 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive ‘T‘s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
Source
// // main.cpp // poj3461 // // Created by Candy on 10/19/16. // Copyright © 2016 Candy. All rights reserved. // #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N=1e6+5,M=1e4+5; int T,f[M];// already i(0...i-1),now pos i char s[N],p[M]; void getFail(){ size_t m=strlen(p); f[0]=f[1]=0; for(int i=1;i<m;i++){ int j=f[i]; while(j&&p[i]!=p[j]) j=f[j]; f[i+1]=p[i]==p[j]?j+1:0; } } int kmp(){ getFail(); int cnt=0; size_t n=strlen(s),m=strlen(p); int j=0; for(int i=0;i<n;i++){ while(j&&s[i]!=p[j]) j=f[j]; if(s[i]==p[j]) j++; if(j==m) cnt++; } return cnt; } int main(int argc, const char * argv[]) { scanf("%d",&T); while(T--){ scanf("%s%s",p,s); printf("%d\n",kmp()); } return 0; }
从0开始太愚蠢了,于是我从1开始重学重写了一遍
1.算法理解(orz 阮一峰):http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html
2.摘抄(修改)课件:
- 定义f[i]表示A[1,i]的长度为f[i]的后缀等于A[1,f[i]] 也就是说对于这个子串来说f[i]长度的前缀和后缀相等(注意顺序都是从左到右相等),那么j+1位置匹配失败就可以转移到f[j]位置(因为1..f[j]和刚刚成功的后缀是一样的)继续匹配f[j]+1
- 多个f[i]符合条件时,取最大的。当然,f[i]是要小于i的,否则就没有意义了。
将i从2到n枚举(f[1]=0是不必计算的),依次计算f[i]。
计算f[i]时,先令j=f[i-1],f[i]最大只会是j+1。只需判断A[i]与A[j+1]是否相等就能判断f[i]是不是j+1。若相等,f[i]=j+1;否则令j=f[j],继续这个过程。
如果j=0后仍然和j+1不相等,就使f[i]=0- 时间复杂度O(n),因为j最多增加减少n次
// // main.cpp // poj3461 // // Created by Candy on 10/19/16. // Copyright ? 2016 Candy. All rights reserved. // #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N=1e6+5,M=1e4+5; int T,f[M],n,m; char t[N],p[M]; void getFail(){ f[1]=0; for(int i=2;i<=m;i++){ int j=f[i-1]; while(j&&p[i]!=p[j+1]) j=f[j]; f[i]=p[i]==p[j+1]?j+1:0; } } int kmp(){ int ans=0; getFail(); int j=0; for(int i=1;i<=n;i++){ while(j&&t[i]!=p[j+1]) j=f[j]; j+=t[i]==p[j+1]; if(j==m) ans++; } return ans; } int main(){ // freopen("in.txt","r",stdin); scanf("%d",&T); while(T--){ scanf("%s%s",p+1,t+1); n=strlen(t+1),m=strlen(p+1); printf("%d\n",kmp()); } return 0; }
标签:algorithm stream class cst nat scan contain command 顺序
原文地址:http://www.cnblogs.com/candy99/p/5976855.html