码迷,mamicode.com
首页 > 其他好文 > 详细

51nod1135(求最小原根)

时间:2016-12-25 18:29:50      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:title   16px   while   mod   amp   ace   判断   target   its   

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135

 

题意:中文题诶~

 

思路:设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)给出1个质数P,找出P最小的原根。

我们先了解一下阶的概念:满足 a^r Ξ (1 mod m) ---1 的最小 r 即为 a%m的阶,我们可以直接从小到大枚举a, 然后将 r= φ(m) 带入进去,

判断如果满足  1式(即 a^x%m=1当且仅当 x=r 时成立)的话即为我们所求的答案。又因为输入的 m为质数,所以 r= φ(m)=m-1. 

判断对于当前 a,x=m-1 是否是 a^x%m=1---2 成立的唯一解我们不可能直接从正面枚举每个x,因为我们并不知道是否存在一个数 n, x>n时2式一定不成立,也就是我们不能确定枚举 x 的范围,那么枚举 x 也就无从谈起咯。不过还有有这样一个定理 对 (m-1) 只因分解成 m1, m2, m3....mk,若存在 x=(m-1)/mi 使得式2成立,那么

当前 a 不是 a mod m 的原根。所以我们就可以从反面枚举 x 啦,若当前 a 使得 x=(m-1)/mi (1<=i<=k)对于式2都不满足, 那么当前 a 即为所求解啦~

 

代码: 

 1 #include <bits/stdc++.h>
 2 #define ll long long
 3 #define MAXN 100
 4 using namespace std;
 5 
 6 ll prime[MAXN];
 7 int cnt=0;
 8 
 9 void make_prime(ll x){
10     for(int i=2; i*i<=x; i++){
11         if(x%i==0){
12             prime[cnt++]=i;
13             while(x%i==0){
14                 x/=i;
15             }
16         }
17     }
18     if(x>1){
19         prime[cnt++]=x;
20     }
21 }
22 
23 ll get_pow(ll x, int n, int mod){
24     ll ans=1;
25     while(n){
26         if(n&1){
27             ans=ans*x%mod;
28         }
29         x=x*x%mod;
30         n>>=1;
31     }
32     if(ans<0){
33         ans+=mod;
34     }
35     return ans;
36 }
37 
38 int main(void){
39     ll m;
40     scanf("%lld", &m);
41     make_prime(m-1);
42     for(int i=2; i<m; i++){
43         int flag=1;
44         for(int j=0; j<cnt; j++){
45             int x=(m-1)/prime[j];
46             if(get_pow(i, x, m)==1){
47                 flag=0;
48                 break;
49             }
50         }
51         if(flag){
52             printf("%d\n", i);
53             return 0;
54         }
55     }
56     return 0;
57 }

 

51nod1135(求最小原根)

标签:title   16px   while   mod   amp   ace   判断   target   its   

原文地址:http://www.cnblogs.com/geloutingyu/p/6219868.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!