标签:training roc closed close value cal 组件 indicator div
典型的卷积神经网络。
array([[[[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]]],
...,
[[[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]]]], dtype=float32)
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
但需要二值化作为output:np_utils.to_categorical(y_train, nb_classes)
Y_train[0]
Out[56]: array([ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.])
Y_train[1]
Out[57]: array([ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
Y_train[2]
Out[58]: array([ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])
Code:
#coding:utf-8 import os from PIL import Image import numpy as np #读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道, #如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:] = arr改为data[i,:,:,:] = [arr[:,:,0],arr[:,:,1],arr[:,:,2]] def load_data(): data = np.empty((42000,1,28,28),dtype="float32") label = np.empty((42000,),dtype="uint8") imgs = os.listdir("./mnist") num = len(imgs) for i in range(num): img = Image.open("./mnist/"+imgs[i]) arr = np.asarray(img,dtype="float32") data[i,:,:,:] = arr label[i] = int(imgs[i].split(‘.‘)[0]) return data,label
Code: a Multilayer Perceptron
import numpy as np
np.random.seed(1337) # for reproducibility
import os
from keras.datasets import mnist #自动下载
# import 套路
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.utils import np_utils
batch_size = 128 #Number of images used in each optimization step
nb_classes = 10 #One class per digit
nb_epoch = 12 #Number of times the whole data is used to learn
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#Flatten the data, MLP doesn‘t use the 2D structure of the data. 784 = 28*28
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
#Make the value floats in [0;1] instead of int in [0;255] --> [归一化]
X_train = X_train.astype(‘float32‘)
X_test = X_test.astype(‘float32‘)
X_train /= 255
X_test /= 255
#Display the shapes to check if everything‘s ok
print(X_train.shape[0], ‘train samples‘)
print(X_test.shape[0], ‘test samples‘)
# convert class vectors to binary class matrices (ie one-hot vectors)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
#Define the model achitecture
model = Sequential()
########################################################################################
model.add(Dense(512, input_shape=(784,)))
model.add(Activation(‘relu‘))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation(‘relu‘))
model.add(Dropout(0.2))
model.add(Dense(10)) #Last layer with one output per class
model.add(Activation(‘softmax‘)) #We want a score simlar to a probability for each class
########################################################################################
#Use rmsprop to do the gradient descent see http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
#and http://cs231n.github.io/neural-networks-3/#ada
rms = RMSprop()
#The function to optimize is the cross entropy between the true label and the output (softmax) of the model
model.compile(loss=‘categorical_crossentropy‘, optimizer=rms, metrics=["accuracy"])
#Make the model learn --> [Training]
model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=2,
validation_data=(X_test, Y_test))
#Evaluate how the model does on the test set
score = model.evaluate(X_test, Y_test, verbose=0)
print(‘Test score:‘, score[0])
print(‘Test accuracy:‘, score[1])
Code: a Convolutional Neural Network
import numpy as np
np.random.seed(1337) # for reproducibility
import os
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
batch_size = 128
nb_classes = 10
nb_epoch = 12
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
#Add the depth in the input. Only grayscale so depth is only one
#see http://cs231n.github.io/convolutional-networks/#overview
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
#Make the value floats in [0;1] instead of int in [0;255]
X_train = X_train.astype(‘float32‘)
X_test = X_test.astype(‘float32‘)
X_train /= 255
X_test /= 255
#Display the shapes to check if everything‘s ok
print(‘X_train shape:‘, X_train.shape)
print(X_train.shape[0], ‘train samples‘)
print(X_test.shape[0], ‘test samples‘)
# convert class vectors to binary class matrices (ie one-hot vectors)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
##############################################################################################
model = Sequential()
#For an explanation on conv layers see http://cs231n.github.io/convolutional-networks/#conv
#By default the stride/subsample is 1
#border_mode "valid" means no zero-padding.
#If you want zero-padding add a ZeroPadding layer or, if stride is 1 use border_mode="same"
model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode=‘valid‘,
input_shape=(1, img_rows, img_cols)))
model.add(Activation(‘relu‘))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation(‘relu‘))
#For an explanation on pooling layers see http://cs231n.github.io/convolutional-networks/#pool
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
#Flatten the 3D output to 1D tensor for a fully connected layer to accept the input
model.add(Flatten())
model.add(Dense(128))
model.add(Activation(‘relu‘))
model.add(Dropout(0.5))
model.add(Dense(nb_classes)) #Last layer with one output per class
model.add(Activation(‘softmax‘)) #We want a score simlar to a probability for each class
###############################################################################################
#The function to optimize is the cross entropy between the true label and the output (softmax) of the model
#We will use adadelta to do the gradient descent see http://cs231n.github.io/neural-networks-3/#ada
model.compile(loss=‘categorical_crossentropy‘, optimizer=‘adadelta‘, metrics=["accuracy"])
#Make the model learn
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))
#Evaluate how the model does on the test set
score = model.evaluate(X_test, Y_test, verbose=0)
print(‘Test score:‘, score[0])
print(‘Test accuracy:‘, score[1])
另一个卷积示例:
#coding:utf-8
‘‘‘
GPU run command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cnn.py
CPU run command:
python cnn.py
‘‘‘
#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
import numpy as np
np.random.seed(1024) # for reproducibility
#加载数据
data, label = load_data()
#打乱数据
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ‘ samples‘)
#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
#【第一个卷积层】,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,参见这里:http://blog.csdn.net/niuwei22007/article/details/49366745
#激活函数用tanh
#你还可以在model.add(Activation(‘tanh‘))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode=‘valid‘,input_shape=(1,28,28)))
model.add(Activation(‘tanh‘))
#【第二个卷积层】,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8, 3, 3, border_mode=‘valid‘))
model.add(Activation(‘tanh‘))
model.add(MaxPooling2D(pool_size=(2, 2)))
#【第三个卷积层】,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 3, 3, border_mode=‘valid‘))
model.add(Activation(‘relu‘))
model.add(MaxPooling2D(pool_size=(2, 2)))
#【全连接层】,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init=‘normal‘))
model.add(Activation(‘tanh‘))
#【Softmax分类】,输出是10类别
model.add(Dense(10, init=‘normal‘))
model.add(Activation(‘softmax‘))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=‘categorical_crossentropy‘, optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
标签:training roc closed close value cal 组件 indicator div
原文地址:http://www.cnblogs.com/jesse123/p/6240079.html