码迷,mamicode.com
首页 > 其他好文 > 详细

年薪50万的大数据分析师养成记【摘抄】

时间:2017-01-06 17:00:54      阅读:208      评论:0      收藏:0      [点我收藏+]

标签:行业   速度   比较   监控   德鲁克   能力   解决   src   span   

以下是一位在数据分析领域打滚了N年后,写下的一些体会,一定能给新人一些借鉴的地方。(总结的不错,大家可以借鉴学习哦)

一、数据分析师有哪些要求?

  1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。

  2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。

  3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。

  4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。

二、请把数据分析作为一种能力来培养

  从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。

三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:

  数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。

  (一) 获取数据

  获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。

  推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》

  工具:思维导图、mindmanager软件

  (二) 处理数据

  一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:

  Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。

  UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。

  ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。

  Orcle、SQL sever:处理千万级别的数据需要用到这两类数据库。

  当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。

  分析软件主要推荐:

  SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。

  SAS:老牌经典挖掘软件,需要编程。

  R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。

  随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。

  (三) 分析数据

  分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。

  推荐的书籍:

  1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉着,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。

  2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编着。属于入门级的书,适合初学者。

  3、《统计学》第五版,贾俊平等编着,中国人民大学出版社。比较好的一本统计学的书。

  4、《数据挖掘导论》完整版,[美]Pang-Ning Tan等着,范明等翻译,人民邮电出版社。

  5、《数据挖掘概念与技术》,Jiawei Han等着,范明等翻译,机械工业出版社。这本书相对难一些。

  6、《市场研究定量分析方法与应用》,简明等编着,中国人民大学出版社。

  7、《问卷统计分析实务—SPSS操作与应用》,吴明隆着,重庆大学出版社。在市场调查领域比较出名的一本书,对问卷调查数据分析讲解比较详细。

  技术分享

  (四) 呈现数据

  该部分需要把数据结果进行有效的呈现和演讲汇报,需要用到金字塔原理、图表及PPT、word的呈现,培养良好的演讲能力。

  推荐书籍:

  1、《说服力让你的PPT会说话》,张志等编着,人民邮电出版社。

  2、《别告诉我你懂ppt》加强版,李治着,北京大学出版社。

  3、《用图表说话》,基恩。泽拉兹尼着,马晓路等翻译,清华大学出版社。

  (五) 其他的知识结构

  数据分析师除了具备数学知识外,还要具备市场研究、营销管理、心理学、行为学、产品运营、互联网、大数据等方面的知识,需要构建完整广泛的知识体系,才能支撑解决日常遇到的不同类型的商业问题。

  推荐书籍:

  1、《消费者行为学》第10版,希夫曼等人着,江林等翻译,中国人民大学出版社,现在应该更新到更高的版本。

  2、《怪诞行为学》升级版,艾瑞里着,赵德亮等翻译,中信出版社

  3、《营销管理》,科特勒等着,梅清豪翻译,格致出版社和上海人民出版社联合出版

  4、《互联网思维—独孤九剑》,赵大伟主编,机械出版社

  5、《大数据时代—生活、工作与思维的大变革》,舍恩伯格等着,周涛等翻译,浙江人民出版社

四、关于数据分析师的职业发展:

  1、数据分析师通常分两类,分工不同,但各有优势。

  一类是在专门的挖掘团队里面从事数据挖掘和分析工作的。如果你能在这类专业团队学习成长,那是幸运的,但进入这类团队的门槛较高,需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。该类分析师更偏向技术线条,未来的职业通道可能走专家的技术路线。

  另一类是下沉到各业务团队或者运营部门的数据分析师,成为业务团队的一员。他们工作是支撑业务运营,包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。该类型分析师偏向产品和运营,可以转向做运营和产品。

  2、数据分析师的理想行业在互联网,但条条大道通罗马,走合适你的路线。

  从行业的角度来看:

  1)互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。

  2)其次是咨询公司(比如专门的数据挖掘公司Teradata、尼尔森等市场研究公司),他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。

  3)再次是金融行业,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。

  4)最后是电信行业(中国移动、联通和电信),它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。

五、什么人适合学习数据分析?

  这个问题的答案跟“什么人适合学功夫”一样,毫无疑问,功夫是适合任何人学习的(排除心术不正的人),因为能够强身健体。而功夫的成效,要看习武者的修炼深浅。常常有人争论,是咏春拳厉害,还是散打厉害,其实是颠倒了因果,应该看哪个人练习得比较好,流派之间没有高低,只有人修炼的厚薄。

  实际上,问题的潜台词是“什么人学习数据分析,会更容易取得成功(比如职业成功)”,这个要视乎你的兴趣、付出和机遇。但要做到出类拔萃,除了上面三点,还需要一点天赋,这里的机遇是指你遇到的职业发展平台、商业环境、导师和同事。

  借用管理大师德鲁克的话“管理是可以习得的”,管理并非是天生的,而数据分析能力,也可以后天提升。或许做到优秀,只需要你更加的努力+兴趣,而这个努力的过程,也包括你寻找机遇的部分。

六、关于如何学习:

  学习方法千万种,关键是找到适合自己的,最好能够结合你的工作遇到的问题来学习。

  1、搜集书籍、案例库和视频,先弄懂理论,然后学会软件操作,自己制作属于自己的教程。

  比如,你学习聚类分析模型。1)搜集相关的聚类分析模型的书籍、案例和教学视频,了解聚类分析的原理,主要有哪几种算法(划分、层次、密度、网格)、模型适用的范围和前提、如何评估模型的精确度等。

  2)自己学会用软件来实现。

  3)总结整理成一份PPT和制作操作视频,成为自己的学习教程,不断完善。

  4)学习到一定程度后,可以在博客、微信等渠道分享,授人与渔,而自己也会有所收获。

  2、关注名人、名博、网站,多渠道学习。

  1)关注专业的数据分析、咨询公司网站和论坛,特别强调,统计软件公司的网站如SPSS的官网有很多案例库,值得关注。

  SPSS的案例库,可在官网上搜索各类案例:http://www.ibm.com/developerwork ... 8zhangzy/index.html

  另外,你最好建一个自己的网址导航目录,提升你的学习效率

  2)关注名人名博,最好能加他们的微博、微信和微信公众号,看牛人的博客和微信等内容,还是能得到很多引导,这个你懂的。

  3)加入一些有共同爱好的QQ群,互相学习交流。通常群里有人会提出一些真实的运营问题,然后大家用不同的方法去解决,对思路很有启发。

  4)碎片化学习,最大化你的时间价值。为了把零散的时间利用起来,通常我会把一些资料上载到网盘,在零碎的时间里通过手机进行视频、文档学习等。目前使用百度云盘和360网盘。百度云盘应用比较广,通常在网络上搜索“关键词+百度云”后,搜到结果可以直接保存在云盘上,搜索保存速度极大提升。360网盘则空间比较大,可以到达40T,同时有保险箱加密功能,安全性高一些。

  手机上安装一些APP,随时随地学习。

七、最后的建议

  请再次问问自己,是否真的喜欢数据分析,能否忍受处理数据时的寂寞?如果是,那就开始学习,给你几条建议。

 

  1、把数据分析作为一种能力培养,让自己在现在的团队中展现出良好的数据分析能力,为你以后内部转岗做好准备。如果内部转岗不成,你可以考虑跳槽到我之前分析的行业中,但我强烈建议你还是需要把系统开发的编程能力学习好,并且对商业智能系统(BI和CRM)有一定了解,这也许是应聘数据分析的优势。如果没有数据分析经验去应聘,相对会难一些,用人单位会考你统计和数据挖掘模型方面的知识,以及工具使用情况。

 

  2、在公司里找一些有共同爱好的同事一起学习数据分析,平时多请教数据分析做得好的同事,它山之石,可以攻玉。

 

  3、扎实学好一、两门数据挖掘软件,基于你有编程的基础,建议你可以学SAS或者R,同时辅助学习SPSS Modeler。如果没编程基础或者希望短期能够取得成效,那也可以先学习SPSS。SAS+SPSS,基本能够满足很大部分企业的需求,三者都会,那更好。

 

  4、要了解公司是如何运营,产品是如何开发的,如何做客户研究锁定客户需求,如何做产品营销,这些需要不断工作积累和广泛的阅读。

 

  5、开始学习时,先读几本有趣的数据分析类的书,然后系统学习一下统计知识(建议教材用《统计学》第五版,贾俊平等编着),接着网上快速搜集软件操作视频和案例,然后逐个分析模型进行学习和总结归纳,学习最好能够结合实际工作中的问题进行。

 

  6、学习到一定程度时,参加一些数据分析师的职业认证,进一步梳理知识结构,同时认识一些志同道合的朋友和老师,也是对你有很大帮助。

 

  希望你能够成为你想成为的人!

 

原文:http://bbs.pinggu.org/thread-5045933-1-1.html

 

年薪50万的大数据分析师养成记【摘抄】

标签:行业   速度   比较   监控   德鲁克   能力   解决   src   span   

原文地址:http://www.cnblogs.com/patrikathy/p/6256694.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!